Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 8, pp 608–614 | Cite as

Synthesis, Crystal Structures, and Antibacterial Activity of Manganese(III) Complexes with Schiff Bases

  • X. W. ZhuEmail author
Article
  • 6 Downloads

Abstract

Two new manganese(III) complexes, [MnL1(EtOH)(Acac)] (I) and [MnL2(DMF)(Esal)] · H2O (II), where L1 and L2 are the dianionic form of 2-[(2-hydroxyphenylimino)methyl]-6-methoxyphenol (H2L1) and 4-chloro-2-[(3-ethoxy-2-hydroxybenzylidene)amino]phenol (H2L2), respectively, Acac is acetylacetone, Esal is 3-ethoxysalicylaldehyde, were prepared and characterized by IR and UV-Vis spectra, as well as single crystal X-ray diffraction (CIF files CCDC nos. 1849854 (I) and 1849855 (II)). Complex I crystallizes as the hexagonal space group P\(\bar {3}\) with unit cell dimensions a = b = 20.4482(9), c = 8.6952(7) Å, V = 3148.6(3) Å3, Z = 6, R1 = 0.0375, wR2 = 0.0957, GOOF = 1.050. Complex II crystallizes as the triclinic space group P¯1 with unit cell dimensions a = 8.1602(12), b = 11.5960(15), c = 15.3859(13) Å, α = 78.873(2)°, β = 83.766(2)°, γ = 84.964(2)°, V = 1416.7(3) Å3, Z = 2, R1 = 0.0733, wR2 = 0.1795, GOOF = 1.029. X-ray analyses indicate that the complexes are manganese(III) species, with the Mn atoms in octahedral coordination. The Schiff bases and the complexes were evaluated for their antibacterial (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescence) activities.

Keywords:

Schiff base manganese complex mononuclear complex crystal structure antibacterial activity 

REFERENCES

  1. 1.
    Kaplancikli, Z.A., Altintop, M.D., Ozdemir, A., et al., Lett. Drug Des. Discov., 2014, vol. 11, no. 3, p. 355.CrossRefGoogle Scholar
  2. 2.
    Peng, D.-L. and Sun, N., Acta Chim. Slov., 2018, vol. 65, no. 4, p. 895.CrossRefGoogle Scholar
  3. 3.
    Qian, H.Y., Russ. J. Coord. Chem., 2017, vol. 43, no. 11, p. 780.  https://doi.org/10.1134/S107032841711007 CrossRefGoogle Scholar
  4. 4.
    Zhu, X.W., Russ. J. Coord. Chem., 2018, vol. 44, no. 5, p. 335.  https://doi.org/10.1134/S1070328418050081 CrossRefGoogle Scholar
  5. 5.
    Loncle, C., Brunel, J.M., Vidal, N., et al., Eur. J. Med. Chem., 2004, vol. 39, no. 12, p. 1067.CrossRefGoogle Scholar
  6. 6.
    Liu, Y.-C., Wang, H.-L., Tang, S.-F., et al., Anticancer Res., 2014, vol. 34, no. 10, p. 6034.Google Scholar
  7. 7.
    Krishnamoorthy, P., Sathyadevi, P., Cowley, A.H., et al., Eur. J. Med. Chem., 2011, vol. 46, no. 8, p. 3376.CrossRefGoogle Scholar
  8. 8.
    Zhang, M., Xian, D.-M., Li, H.-H., et al., Aust. J. Chem., 2012, vol. 65, no. 4, p. 343.CrossRefGoogle Scholar
  9. 9.
    Shi, L., Ge, H.-M., Tan, S.-H., et al., Eur. J. Med. Chem., 2007, vol. 42, no. 4, p. 558.CrossRefGoogle Scholar
  10. 10.
    Rai, N.P., Narayanaswamy, V.K., Govender, T., et al., Eur. J. Med. Chem., 2010, vol. 45, no. 6, p. 2677.CrossRefGoogle Scholar
  11. 11.
    Mandal, S., Karmakar, T.K., Ghosh, A., et al., Polyhedron, 2011, vol. 30, no. 5, p. 790.CrossRefGoogle Scholar
  12. 12.
    Ghosh, M., Fleck, M., Mahanti, B., et al., J. Coord. Chem., 2012, vol. 65, no. 22, p. 3884.CrossRefGoogle Scholar
  13. 13.
    Fleck, M., Layek, M., Saha, R., et al., Transition Met. Chem., 2013, vol. 38, no. 7, p. 715.Google Scholar
  14. 14.
    Mandal, S., Rout, A.K., Ghosh, A., et al., Polyhedron, 2009, vol. 28, no. 17, p. 3858.CrossRefGoogle Scholar
  15. 15.
    SMART (version 5.625) and SAINT (version 6.01), Madison: Bruker AXS Inc., 2007.Google Scholar
  16. 16.
    Sheldrick, G.M., SADABS, Program for Empirical Absorption Correction of Area Detector, Göttingen: Univ. of Göttingen, 1996.Google Scholar
  17. 17.
    Sheldrick, G.M., SHELXTL V5.1, Software Reference Manual, Göttingen: Univ. of Göttingen, Bruker AXS, Inc., 1997.Google Scholar
  18. 18.
    Meletiadis, J., Meis, J.F.G.M., Mouton, J.W., et al., J. Clin. Microbiol., 2000, vol. 38, no. 8, p. 2949.Google Scholar
  19. 19.
    Ghaemi, A., Keyvani, B., Rayati, S., et al., J. Struct. Chem., 2016, vol. 57, no. 5, p. 1027.CrossRefGoogle Scholar
  20. 20.
    Manna, S., Mistric, S., Bhunia, A., et al., J. Coord. Chem., 2017, vol. 70, no. 2, p. 296.CrossRefGoogle Scholar
  21. 21.
    Qian, H.Y., Russ. J. Coord. Chem., 2018, vol. 44, no. 1, p. 32. https://doi.org/10.1134/S1070328418010074CrossRefGoogle Scholar
  22. 22.
    Khani, S., Montazerozohori, M., Masoudiasl, A., et al., J. Mol. Struct., 2018, vol. 1153, p. 239.CrossRefGoogle Scholar
  23. 23.
    Zhang, H.Y., Kong, L.Q., and Zhang, D.P., Russ. J. Inorg. Chem., 2016, vol. 61, no. 7, p. 841.  https://doi.org/10.1134/S0036023616070202 CrossRefGoogle Scholar
  24. 24.
    Farhadi, S., Mahmoudi, F., and Simpson, J., J. Mol. Struct., 2016, vol. 1108, p. 583.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Surface and Interface Science of Henan, School of Material and Chemical Engineering, Zhengzhou University of Light IndustryZhengzhouP.R. China

Personalised recommendations