Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 8, pp 539–547 | Cite as

Rhenium Tris(pyrazolyl)Borate Oxothiolate Complexes: Syntheses and Structures

  • I. V. SkabitskiiEmail author
  • S. G. Sakharov
  • A. A. Pasynskii
  • R. S. Eshmakov
Article
  • 2 Downloads

Abstract

The rhenium complexes TpReOCl(StBu) (I), TpReO(StBu)2 (II), and TpReO(SnC3H7)2 (III) are synthesized using two methods by analogy to the known thiophenyl complexes. Complexes IIII having more electron-donating alkylthiolate ligands are characterized by IR and NMR spectroscopy. The structures of complexes I–III are determined by X-ray diffraction analysis (СIF files CCDC nos. 1892096 (I), 1892097 (II), and 1892098 (III)). The temperature dependence of the spectra of the bis(thiolate) complexes allows one to determine the activation energy for the hindered rotation about the Re–thiolate ligand bond. The by-product of the reaction of TpReOCl2 with NaS-tert-Bu, binuclear oxygen-bridged complex TpReIVCl(S-tert-Bu)O(S-tert-Bu)2ReIVTp, is isolated and structurally characterized (СIF file CCDC no. 1892099).

Keywords:

rhenium complexes thiolate complexes tris(pyrazolyl)borate hindered rotation temperature-dependent NMR 

Notes

ACKNOWLEDGMENTS

The quantum chemical calculations were performed in the framework of the state task of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the sphere of basic research. The study was carried out using the equipment of the Center for Collective Use Physical Methods of Investigation at the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences).

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 16-03-00798) and the Presidium of the Russian Academy of Sciences (program no. I.35.2.3).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Abrams, M.J., Davison, A., and Jones, A.G., Inorg. Chim. Acta, 1984, vol. 82, p. 125.CrossRefGoogle Scholar
  2. 2.
    Cohen, E.A., McRae, G.A., Goldwhite, H., et al., Inorg. Chem., 1987, vol. 26, p. 4000.CrossRefGoogle Scholar
  3. 3.
    Brown, S.N. and Mayer, J.M., Inorg. Chem., 1992, vol. 31, p. 4091.CrossRefGoogle Scholar
  4. 4.
    Tisato, F., Bolzati, C., Duatti, A., et al., Inorg. Chem., 1993, vol. 32, p. 2042.CrossRefGoogle Scholar
  5. 5.
    Degnan, I.A., Behm, J., Cook, M.R., and Herrmann, W.A., Inorg. Chem., 1991, vol. 30, p. 2165.CrossRefGoogle Scholar
  6. 6.
    Trofimenko, S., Long, J.R., Nappier, T., and Shore, S.G., Inorg. Synt., 1980, vol. 12, no. p. 99.Google Scholar
  7. 7.
    SADABS (version 2008/1), Madison: Bruker AXS Inc., 2008.Google Scholar
  8. 8.
    Sheldrick, G.M., Acta Crystallogr., Section A: Found. Crystallogr., 2008, vol. 64, p. 112.CrossRefGoogle Scholar
  9. 9.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.CrossRefGoogle Scholar
  10. 10.
    Neese, F., WIREs Comput. Mol. Sci., 2018, vol. 8, p. e1327.  https://doi.org/10.1002/wcms.1327 CrossRefGoogle Scholar
  11. 11.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.CrossRefGoogle Scholar
  12. 12.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1997, vol. 78, p. 1396.CrossRefGoogle Scholar
  13. 13.
    Weigend, F. and Ahlrichs, R., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 3297.CrossRefGoogle Scholar
  14. 14.
    Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, p. 1456.CrossRefGoogle Scholar
  15. 15.
    Grimme, S., Antony, J., Ehrlich, S., and Krieg, H., J. Chem. Phys., 2010, vol. 132, p. 154104.CrossRefGoogle Scholar
  16. 16.
    Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, p. 6158.CrossRefGoogle Scholar
  17. 17.
    Cordero, B., Gomez, V., Platero-Prats, A.E., et al., Dalton Trans., 2008, vol. 21, p. 2832.CrossRefGoogle Scholar
  18. 18.
    Kettler, P.B., Chang, Y.-D., Chen, Q., et al., Inorg. Chim. Acta, 1995, vol. 231, p. 13.CrossRefGoogle Scholar
  19. 19.
    Herberhold, M., Jin, G.-X., and Milius, W., J. Organomet. Chem., 1996, vol. 512, p. 111.CrossRefGoogle Scholar
  20. 20.
    Sugimoto, H., Takahira, T., Yoshimura, T., et al., Inorg. Chim. Acta, 2002, vol. 337, p. 203.CrossRefGoogle Scholar
  21. 21.
    Boehm, G., Wieghardt, K., Nuber, B., and Weiss, J., Inorg. Chem., 1991, vol. 30, p. 3464.CrossRefGoogle Scholar
  22. 22.
    Bera, J.K., Schelter, E.J., Patra, S.K., et al., Dalton Trans., 2006, vol. 33, p. 4011.CrossRefGoogle Scholar
  23. 23.
    Kochel, A. and Holynska, M., Inorg. Chem. Commun., 2010, vol. 13, p. 782.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Skabitskii
    • 1
    Email author
  • S. G. Sakharov
    • 1
  • A. A. Pasynskii
    • 1
  • R. S. Eshmakov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations