Russian Journal of Coordination Chemistry

, Volume 45, Issue 8, pp 573–584 | Cite as

Quantum Chemical Simulation of Hexa-, Penta-, and Tetracoordination Modes in Stereoisomers of the Co(II) and Ni(II) Bis(ligand) Complexes Based on (N,O,S(Se))-Tridentate Azomethines

  • N. N. KharabayevEmail author


The molecular structures and relative energies of hexa-, penta-, and tetracoordinated stereoisomers of the Co(II) and Ni(II) bis(ligand) complexes based on (N,O,Y)-tridentate azomethines with the phenyl thio(seleno) ether substituent at the azomethine nitrogen atom (coordination modes of the competing stereoisomers MN2O2Y2, MN2O2Y, or MN2O2 (Y = S, Se)) are calculated using the density functional theory. Hexacoordination is predominant in the Co(II) and Ni(II) complexes (combined with tetracoordination for the Co(II) complexes), unlike pentacoordination prevailing in similar Co(II) and Ni(II) complexes based on azomethines with thio(seleno)benzimidazole fragments (with Y atoms in the thione form). The quantum chemical simulation is performed for possible stereoisomerization reactions in the CoL2 complexes to take into account the role of interconfiguration transitions in the competition of the hexa-, penta-, and tetracoordinated stereoisomers.


quantum chemical simulation coordination compounds stereoisomerization tridentate azomethines 



N.N. Kharabaev acknowledges Academician V.I. Min-kin for fruitful consultations during this study.


This work was supported by the Ministry of Education and Science of the Russian Federation (design part of the state task in the sphere of scientific activities, project no. 4.844.2017/PCh).


  1. 1.
    Garnovskii, A.D., Nivorozhkin, A.L., and Minkin, V.I., Coord. Chem. Rev., 1993, vol. 126, no. 1, p. 1.CrossRefGoogle Scholar
  2. 2.
    Bourget-Merle, L., Lappert, M.F., and Severn, J.R., Chem. Rev., 2002, vol. 102, no. 6, p. 3031.CrossRefGoogle Scholar
  3. 3.
    Garnovskii, A.D., Vasilchenko, I.S., Garnovskii, D.A., and Kharisov, B.I., J. Coord. Chem., 2009, vol. 62, no. 2, p. 151.CrossRefGoogle Scholar
  4. 4.
    Kharabaev, N.N., Starikov, A.G., and Minkin, V.I., Dokl. Ross. Akad. Nauk, 2014, vol. 458. no. 5, p. 555.Google Scholar
  5. 5.
    Kharabayev, N.N., Starikov, A.G., and Minkin, V.I., Russ. J. Coord. Chem., 2015, vol. 41, no. 7, p. 421. CrossRefGoogle Scholar
  6. 6.
    Kharabaev, N.N., Starikov, A.G., and Minkin, V.I., J. Struct. Chem., 2016, vol. 57. no. 3, p. 431.CrossRefGoogle Scholar
  7. 7.
    Pal, S., Sengupta, P., Ghosh, S., et al., J. Coord. Chem., 2002, vol. 55, p. 271.Google Scholar
  8. 8.
    Rajsekhar, G., Rao, C.P., Saarenketo, P., et al., Inorg. Chem. Commun., 2002, vol. 5, p. 649.CrossRefGoogle Scholar
  9. 9.
    Rajsekhar, G., Rao, C.P., Saarenketo, P., et al., New J. Chem., 2004, vol. 28, p. 75.CrossRefGoogle Scholar
  10. 10.
    Roy, N., Sproules, S., Bothe, E., et al., Eur. J. Inorg. Chem., 2009, p. 2655.Google Scholar
  11. 11.
    Lucas, C.R., Byrne, J.M.D., Collins, J.L., et al., Can. J. Chem., 2011, vol. 89, p. 1174.CrossRefGoogle Scholar
  12. 12.
    Manikandan, R., Vijayan, P., Anitha, P., et al., Inorg. Chim. Acta, 2014, vol. 421, p. 80.CrossRefGoogle Scholar
  13. 13.
    Pattanayak, P., Pratihar, J.L., Patra, D., et al., Polyhedron, 2013, vol. 51, p. 275.CrossRefGoogle Scholar
  14. 14.
    Kalita, M., Bhattacharjee, T., Gogoi, P., et al., Polyhedron, 2013, vol. 60, p. 47.CrossRefGoogle Scholar
  15. 15.
    Kalita, M., Gogoi, P., Barman, P., and Sarma, B., J. Coord. Chem., 2014, vol. 67, p. 2445.CrossRefGoogle Scholar
  16. 16.
    Pattanayak, P., Pratihar, J.L., Patra, D., et al., Inorg. Chim. Acta, 2014, vol. 418, p. 171.CrossRefGoogle Scholar
  17. 17.
    Kalita, M., Tamuli, K.J., Barman, P., et al., Polyhedron, 2015, vol. 97, p. 140.CrossRefGoogle Scholar
  18. 18.
    Sarma, K., Devi, N., Kalita, M., et al., J. Coord. Chem., 2015, vol. 68, p. 3685.CrossRefGoogle Scholar
  19. 19.
    Roebuck, J.W., Turkington, J.R., Rogers, D.M., et al., Dalton Trans., 2016, vol. 45, p. 3734.CrossRefGoogle Scholar
  20. 20.
    Kharabayev, N.N. and Minkin, V.I., Russ. J. Coord. Chem., 2017, vol. 43, no. 3, p. 139. CrossRefGoogle Scholar
  21. 21.
    Kharabayev, N.N., Russ. J. Coord. Chem., 2017, vol. 43, no. 12, p. 807. CrossRefGoogle Scholar
  22. 22.
    Kharabaev N.N., Russ. J. Gen. Chem., 2018, vol. 88, no. 8, p. 1663.CrossRefGoogle Scholar
  23. 23.
    Parr, R. and Yang, W., Density-Functional Theory of Atoms and Molecules, New York: Oxford Univ., 1989.Google Scholar
  24. 24.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 09, Revision D.01, Wallingford: Gaussian, Inc., 2013.Google Scholar
  25. 25.
    Sousa, S.F., Fernandes, P.A., and Ramos, M.J., J. Phys. Chem. A, 2007, vol. 111, no. 42, p. 10439.CrossRefGoogle Scholar
  26. 26.
    Burke, K. and Wagner, L.O., Int. J. Quantum Chem., 2013, vol. 113, no. 2, p. 96.CrossRefGoogle Scholar
  27. 27.
    Tsipis, A.C., Coord. Chem. Rev., 2014, vol. 272, p. 1.CrossRefGoogle Scholar
  28. 28.
    Becke, A.D., Phys. Rev. A: At., Mol., Opt. Phys., 1988, vol. 38, p. 3098.Google Scholar
  29. 29.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev., B: Solid State, 1988, vol. 37, p. 785.CrossRefGoogle Scholar
  30. 30.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.CrossRefGoogle Scholar
  31. 31.
    Tao, J., Perdew, J.P., Staroverov, V.N., and Scuseria, G.E., Phys. Rev. Lett., 2003, vol. 91, p. 146401.CrossRefGoogle Scholar
  32. 32.
    Zhurko, G.A. and Zhurko, D.A., Chemcraft. Version 1.6. http://www.chemcraftprog.comGoogle Scholar
  33. 33.
    Vasil’chenko, I.S., Kuz’menko, T.A., Shestakova, T.E., et al., Russ. J. Coord. Chem., 2005, vol. 31, no. 10, p. 747. CrossRefGoogle Scholar
  34. 34.
    Vasil’chenko, I.S., Shestakova, T.E., Ikorskii, V.N., et al., Russ. J. Coord. Chem., 2007, vol. 33, no. 3, p. 176. CrossRefGoogle Scholar
  35. 35.
    Garnovskii, A.D., Burlov, A.S., Vasil’chenko, I.S., et al., Russ. J. Coord. Chem., 2010, vol. 36, no. 2, p. 81. CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Research Institute of Physical and Organic Chemistry, Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations