Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 8, pp 600–607 | Cite as

Syntheses, Structures, and Properties of Two Cd(II)/Zn(II) Complexes with 1,2,4-triazole Derivatives

  • F. Y. Ju
  • G. L. Li
  • X. L. Li
  • W. D. Yin
  • G. Z. LiuEmail author
Article
  • 9 Downloads

Abstract

Two new coordination polymers, {[Cd(Hmph)(Itmb)] ∙ H2O}n (I) and [Zn(Hmph)(Bpt)2]n (II) (H2Hmph = homophthalic acid, Itmb = 1-(imidazo-1-yl)-4-(1,2,4-triazole-1-ylmethyl)benzene, Bpt = 3,5-bis(4-pyridyl)-1,2,4-triazole) have been prepared and then characterized by single crystal X-ray diffraction (CIF files CCDC nos. 1842595 (I), 1842591 (II)). Complex I shows a 2D layer structure containing Cd-carboxylate chains linked further by itmb coligands, and the ultimate 3D supramolecular structure is stacked through significant π–π interactions. Complex II displays a zigzag Zn-carboxylate chain structure, which is further extended to the final 3D supramolecular structure by hydrogen-bonding and π–π interactions. TGA experiments indicate that complex I and II have high thermal stabilities because they can maintain framework integrity until 275 and 315°C, respectively. And in comparison, with the free ligands, the fluorescent properties of both CPs show significant blue-shift.

Keywords:

homophthalic acid 1,2,4-triazole derivatives thermal stabilities fluorescent properties 

Notes

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (no. 21571093) and Colleges and Universities Key Scientific Research Project of Henan Province (no. 18B150016).

REFERENCES

  1. 1.
    Hendon, C.H., Rieth, A.J., Korzyński, M.D., et al., ACS Cent. Sci., 2017, vol. 3, p. 554.CrossRefGoogle Scholar
  2. 2.
    Li, J.R., Sculley, J., and Zhou, H.C., Chem. Rev., 2012, vol. 112, p. 869.CrossRefGoogle Scholar
  3. 3.
    Liu, T.F., Lu, J., and Cao, R., CrystEngComm, 2010, vol. 12, p. 660.CrossRefGoogle Scholar
  4. 4.
    Wang, W.B., Wang, R.Y., Liu, L.N., et al., Cryst. Growth Des., 2018, vol. 18, p. 3449.CrossRefGoogle Scholar
  5. 5.
    Badiane, A., Freslon, S., Daiguebonne, C., et al., Inorg. Chem., 2018, vol. 57, p. 3399.CrossRefGoogle Scholar
  6. 6.
    Bakkali, H.E., Choquesillo-Lazarte, D., Domínguez-Martín, A., et al., Cryst. Growth Des., 2014, vol. 14, p. 889.CrossRefGoogle Scholar
  7. 7.
    Yin, Z., Zhou, Y.L., Zeng, M.H., et al., Dalton Trans., 2015, vol. 44, p. 5258.CrossRefGoogle Scholar
  8. 8.
    Tanasaro, T., Adpakpang, K., Ittisanronnachai, S., et al., Cryst. Growth Des., 2018, vol. 18, p. 16.CrossRefGoogle Scholar
  9. 9.
    Bae, Y., Mulfort, K.L., Frost, H., et al., Langmuir, 2008, vol. 24, p. 8592.CrossRefGoogle Scholar
  10. 10.
    Xin, L.Y., Liu, G.Z., Li, X.L., et al., Cryst. Growth Des., 2012, vol. 12, p. 147.CrossRefGoogle Scholar
  11. 11.
    Liu, G.Z., Li, X.L., Xin, L.Y., et al., CrystEngComm, 2012, vol. 14, p. 5315.CrossRefGoogle Scholar
  12. 12.
    Li, G.L., Liu, G.Z., Ma, L.F., et al., Chem. Commun., 2014, vol. 50, p. 2615.CrossRefGoogle Scholar
  13. 13.
    Das, D. and Biradha, K., Cryst. Growth Des., 2018, vol. 18, p. 3683.CrossRefGoogle Scholar
  14. 14.
    Boer, S.A. and Turner, D.R., Cryst. Growth Des., 2016, vol. 16, p. 6294.CrossRefGoogle Scholar
  15. 15.
    Ju, F.Y., Li, Y.P., Li, G.L., et al., Chin. J. Struct. Chem., 2016, vol. 35, p. 404.Google Scholar
  16. 16.
    Li, X.L., Liu, G.Z., Xin, L.Y., et al., J. Solid State Chem., 2017, vol. 246, p. 252.CrossRefGoogle Scholar
  17. 17.
    Wang, Y.F., Wei, J.J., and Zhai, X.H., Russ. J. Coord. Chem., 2018, vol. 44, p. 183.  https://doi.org/10.1134/S1070328418030065 CrossRefGoogle Scholar
  18. 18.
    Du, M., Jiang, X.J., and Zhao, X.J., Inorg. Chem., 2007, vol. 46, p. 3984.CrossRefGoogle Scholar
  19. 19.
    Xie, X.F., Chen, S.P., Xia, Z.Q., et al., Polyhedron, 2009, vol. 28, p. 679.CrossRefGoogle Scholar
  20. 20.
    Park, Y.J., Ryu, J.Y., Hwang, S., et al., Inorg. Chem., 2017, vol. 56, p. 14060.CrossRefGoogle Scholar
  21. 21.
    Zhuang, G.M., Li, X.B., and Gao, E.Q., Inorg. Chem. Commun., 2014, vol. 47, p. 134.CrossRefGoogle Scholar
  22. 22.
    Yu, Y., Ma, H.Y., Pang, H.J., et al., New J. Chem., 2014, vol. 38, p. 1271.CrossRefGoogle Scholar
  23. 23.
    Xin, L.Y., Li, X.L., and Liu, G.Z., Kristallogr. NCS, 2016, vol. 231, p. 1215.Google Scholar
  24. 24.
    Wu, M.C., Li, H.Y., and Huang, F.P., J. Chem. Res., 2013, vol. 37, p. 136.CrossRefGoogle Scholar
  25. 25.
    Huang, F.P., Bian, H.D., Yu, Q., et al., CrystEngComm, 2011, vol. 13, p. 6538.CrossRefGoogle Scholar
  26. 26.
    Zhang, J.P., Lin, Y.Y., Huang, X.C., et al., Cryst. Growth Des., 2006, vol. 6, p. 519.CrossRefGoogle Scholar
  27. 27.
    Li, B.Y., Jin, D., Ma, B.H., et al., Eur. J. Inorg. Chem., 2011, vol. 2011, p. 35.CrossRefGoogle Scholar
  28. 28.
    Jin, X.M., Xu, Q.F., Zhou, Q., et al., Chin. J. Inorg. Chem., 2009, vol. 25, p. 539.Google Scholar
  29. 29.
    Sheldrick, G.M., SHELXS-97, Program for X-ray Crystal Structure Determination, Göttingen: Univ. of Göttingen, 1997.Google Scholar
  30. 30.
    Sheldrick, G.M., Program for X-ray Crystal Structure Refinement, Göttingen: Univ. of Göttingen, 1997.Google Scholar
  31. 31.
    Li, Y.P., Ju, F.Y., Li, G.L., et al., Russ. J. Coord. Chem., 2018, vol. 44, p. 214.  https://doi.org/10.1134/S1070328418030028 CrossRefGoogle Scholar
  32. 32.
    Bai, H.Y., Ma, J.F., Yang, J., et al., Cryst. Growth Des., 2010, vol. 10, p. 1946.CrossRefGoogle Scholar
  33. 33.
    Chang, X.H., Zhao, Y., Feng, X., et al., Polyhedron, 2014, vol. 83, p. 159.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • F. Y. Ju
    • 1
  • G. L. Li
    • 2
  • X. L. Li
    • 2
  • W. D. Yin
    • 1
  • G. Z. Liu
    • 2
    Email author
  1. 1.School of Food and Drug, Luoyang Normal UniversityLuoyangP.R. China
  2. 2.College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal UniversityLuoyangP.R. China

Personalised recommendations