Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 8, pp 569–572 | Cite as

Structure of Barbituratobis(2,2'-Dipyridyl)copper(II) Heptahydrate

  • N. N. GolovnevEmail author
  • M. S. Molokeev
  • I. V. Sterkhova
  • M. K. Lesnikov
Article
  • 7 Downloads

Abstract

The structure of the complex [Cu(Bipy)2(BA)] ∙ 7H2O (I), where Bipy is 2,2'-dipyridyl, and BA2– is the barbituric acid anion (H2BA), is determined (CIF file CCDC no. 1887338). The thermal decomposition and IR spectrum of complex I are studied. The crystals are orthorhombic: a = 26.118(3), b = 27.685(3), c = 15.683(2) Å, V = 11 370(2) Å3, space group Fdd2, Z = 16. The discrete structure of the polar crystal consists of neutral [Cu(Bipy)2(BA)] particles and molecules of crystallisation water . The Cu2+ ion is bound to the N atoms of two bidentate Bipy molecules and the N atom of the BA2− ion at the vertices of the trigonal bipyramid CuN5. Compound I is the first example of the metal complex only with the N-coordinated anions of barbituric acid (BA2−, НBA). The structure is stabilized by hydrogen bonds O−H∙∙∙O and N−H∙∙∙O to form a three-dimensional network with the π–π interaction between the Bipy molecules. The compound begins to lose water at ~50°С and is completely dehydrated above 200°С.

Keywords:

copper(II) barbituric acid 2,2'-dipyridyl complex structure properties 

Notes

ACKNOWLEDGMENTS

The X-ray diffraction data were obtained using the equipment of the Baikal and Krasnoyarsk Centers for Collective Use (Siberian Branch of the Russian Academy of Sciences).

FUNDING

This work was supported by the Ministry of Education and Science of the Russian Federation in the framework of the state task for the Siberian Federal University for 2017–2019 (4.7666.2017/BCh).

REFERENCES

  1. 1.
    Mahmudov, K.T., Kopylovich, M.N., Maharramov, A.M., et al., Coord. Chem. Rev., 2014, vol. 265, p. 1.CrossRefGoogle Scholar
  2. 2.
    Xiong, Y., He, C., An, N.C., et al., Transition Met. Chem., 2003, vol. 28, no. 1, p. 69.Google Scholar
  3. 3.
    Gryl, M., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2015, vol. 71, no. 4, p. 392.CrossRefGoogle Scholar
  4. 4.
    Chu, J., Liu, Z.Y., Zhao, X.J., and Yang, E.C., Russ. J. Coord. Chem., 2010, vol. 36, no. 12, p. 901.  https://doi.org/10.1134/S1070328410120067
  5. 5.
    Golovnev, N.N., Solovyov, L.A., Lesnikov, M.K., et al., Inorg. Chim. Acta, 2017, vol. 467, p. 39.CrossRefGoogle Scholar
  6. 6.
    Braga, D., Grepioni, F., Lampronti, G.I., et al., Cryst. Growth Des., 2011, vol. 11, no. 12, p. 5621. CrossRefGoogle Scholar
  7. 7.
    Braga, D., Grepioni, F., Maini, L., et al., CrystEngComm, 2012, vol. 14, p. 3521.CrossRefGoogle Scholar
  8. 8.
    Solovyov, L.A., Golovnev, N.N., Molokeev, M.S., and Lesnikov, M.K., J. Coord. Chem., 2017, vol. 70, p. 1884.CrossRefGoogle Scholar
  9. 9.
    Golovnev, N.N., Molokeev, M.S., Lesnikov, M.K., et al., Russ. J. Inorg. Chem., 2017, vol. 62, p. 746. https://doi.org/10.1134/S0036023617060092CrossRefGoogle Scholar
  10. 10.
    Chierotti, M.R., Gaglioti, K., Gobetto, R., et al., Cryst-EngComm, 2013, vol. 15, p. 7598.CrossRefGoogle Scholar
  11. 11.
    Gryl, M. and Stadnicka, K., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, vol. 67, p. m571.CrossRefGoogle Scholar
  12. 12.
    Braga, D., Grepioni, F., Maini, L., Prosperi, S., et al., Chem. Commun., 2010, vol. 46, p. 7715.CrossRefGoogle Scholar
  13. 13.
    Golovnev, N.N., Molokeev, M.S., Sterkhova, I.V., and Lesnikov, M.K., Inorg. Chem. Commun., 2018, vol. 97, p. 88.CrossRefGoogle Scholar
  14. 14.
    Sinn, E., Flynn, C.M., Jr., and Martin, R.B., J. Am. Chem. Soc., 1978, vol. 100, no. 2, p. 489.CrossRefGoogle Scholar
  15. 15.
    Türkel, N. and Aksoy, M.S., ISRN Anal. Chem., 2014, vol. 2014, p. 1.Google Scholar
  16. 16.
    Korpi, H., Sippola, V., Filpponen, I., et al., Appl. Catal., A, 2006, vol. 302, no. 2, p. 250.Google Scholar
  17. 17.
    Garcia, H.C., J. Coord. Chem., 2011, vol. 64, p. 1125.CrossRefGoogle Scholar
  18. 18.
    Gerasimova, T.P. and Katsyuba, S.A., Dalton Trans., 2013, vol. 42, p. 1787.CrossRefGoogle Scholar
  19. 19.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.CrossRefGoogle Scholar
  20. 20.
    PLATON. A Multipurpose Crystallographic Tool, Utrecht (Netherlands): Univ. of Utrecht, 2008.Google Scholar
  21. 21.
    Brandenburg, K. and Berndt, M., DIAMOND, Visual Crystal Structure Information System CRYSTAL IMPACT, Postfach, 2005, p. 1251.Google Scholar
  22. 22.
    Cambridge Structural Database. Version 5.36, Cambridge: Univ. of Cambridge, 2018.Google Scholar
  23. 23.
    Lewis, T.C., Tocher, D.A., and Price, S.L., Cryst. Growth Des., 2004, vol. 4, no. 5, p. 979.CrossRefGoogle Scholar
  24. 24.
    Golovnev, N.N. and Molokeev, M.S., 2-Tiobarbiturovaya kislota i ee kompleksy s metallami: sintez, struktura i svoistva (2-Thiobarbituric Acid and Its Metal Complexes: Synthesis, Structure, and Properties), Krasnoyarsk: Sib. Feder. Univ., 2014.Google Scholar
  25. 25.
    Steed, J.W. and Atwood, J.L., Supramolecular Chemistry, Moscow: Akademkniga, 2007, Ch. 1−2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. N. Golovnev
    • 1
    Email author
  • M. S. Molokeev
    • 1
    • 2
    • 3
  • I. V. Sterkhova
    • 4
  • M. K. Lesnikov
    • 1
  1. 1.Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Kirenskii Institute of Physics, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  3. 3.Far East State Transport UniversityKhabarovskRussia
  4. 4.Favorskii Institute of Chemistry, Siberian Branch, Russian Academy of SciencesIrkutskRussia

Personalised recommendations