Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 8, pp 548–554 | Cite as

The Reaction of Re3Br9 with P(CH2OH)3: Diversity of Modes of Coordination of Hydroxymethylphosphine to Clusters

  • A. V. Anyushin
  • P. A. Abramov
  • M. N. SokolovEmail author
Article
  • 13 Downloads

Abstract

The reaction of Re3Br9 with P(CH2OH)3 (THP) in methanol under inert atmosphere gives a new cluster complex, [Re32‑Br)3Br33-P,O,O-P(CH2OH)(CH2O)2)2H] ∙ 0.8H2O · 1.6MeOH (I). With access of air, the reaction produces a different product, [{Re32-Br)3Br2(OCH2)2PCH2-OP(CH2OH)2}2-{(P(CH2OH)(CH2O)2)}2] (II), in which two triangular clusters are linked by deprotonated THP molecules as bridging ligands. In addition, each cluster is coordinated in a tetradentate fashion by the phosphine-phosphinite ligand, resulting from the oxidative condensation of two THP molecules (CIF files CCDC 1829565 (I) and 1829566 (II)).

Keywords:

rhenium clusters phosphine complexes hydrophilic ligands crystal structure 

Notes

AUTHOR CONTRIBUTIONS

M.N. Sokolov (Head of the Project) put forward the idea and discussed the results; A.V. Anyushin (principal investigator) conducted experiments. P.A. Abramov performed X-ray diffraction analysis. M.N. Sokolov and A.V. Anyushin co-wrote the paper.

FUNDING

The work was supported by the Russian Foundation for Basic Research (grant no. 17-03-00663).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Pinault, T. and Bruce, D.W., Coord. Chem. Rev., 2003, vol. 241, p. 1.CrossRefGoogle Scholar
  2. 2.
    Herrmann, W.A. and Kohlpaintner, C.W., Angew. Chem., Int. Ed. Engl., 1993, vol. 32, p. 1524.CrossRefGoogle Scholar
  3. 3.
    Kothari, K.K., Raghuraman, K., Pillarsetty, N.K., et al., Appl. Radiat. Isot., 2003, vol. 58, p. 543.CrossRefGoogle Scholar
  4. 4.
    Dilworth, J.R. and Parrott, S.J., Chem. Soc. Rev., 1998, vol. 27, p. 43.CrossRefGoogle Scholar
  5. 5.
    Blower, P.J., Transition Met. Chem., 1998, vol. 23, p. 109.Google Scholar
  6. 6.
    James, B.R. and Lorenzini, F., Coord. Chem. Rev., 2010, vol. 254, p. 420.CrossRefGoogle Scholar
  7. 7.
    Katti, K.V., Gali, H., Smith, C.J., et al., Acc. Chem. Res., 1999, vol. 32, p. 9.CrossRefGoogle Scholar
  8. 8.
    Ellis, W., Harrison, K.N., Hoye, P.A.T., et al., Inorg. Chem., 1992, vol. 31, p. 3026.CrossRefGoogle Scholar
  9. 9.
    Chatt, J., Leigh, J.G., and Slade, R.M., Dalton Trans., 1973, p. 2021.Google Scholar
  10. 10.
    Berning, D.E., Katti, K.V., Barbour, L.G., et al., Inorg. Chem., 1998, vol. 37, p. 334.CrossRefGoogle Scholar
  11. 11.
    Driessen-Holscher, B. and Heinen, J., J. Organomet. Chem., 1998, vol. 570, p. 141.CrossRefGoogle Scholar
  12. 12.
    Fukoka, A., Kosugi, W., Morishita, F., et al., Chem. Commun., 1999, p. 489.Google Scholar
  13. 13.
    Moiseev, D., James, B.R., Patrick, B.J., et al., Inorg. Chem., 2006, vol. 45, p. 2917.CrossRefGoogle Scholar
  14. 14.
    Kalio, R., Lonnecke, P., and Hey-Hawkins, E., J. Organomet. Chem., 2008, vol. 693, p. 590.CrossRefGoogle Scholar
  15. 15.
    Cadierno, V., Crochet, P., García-Garrido, S.E., et al., Dalton Trans., 2004, p. 3635.Google Scholar
  16. 16.
    Čubrilo, J., Hartenbach, I., Schleid, T., et al., Z. Anorg. Allg. Chem., 2006, vol. 632, p. 400.CrossRefGoogle Scholar
  17. 17.
    Casey, C.P., Singer, S.W., Powell, D.R., et al., J. Am. Chem. Soc., 2001, vol. 123, p. 1090.CrossRefGoogle Scholar
  18. 18.
    Sokolov, M.N., Anyushin, A.V., Hernandez-Molina, R., et al., Pure Appl. Chem., 2017, vol. 89, p. 379.CrossRefGoogle Scholar
  19. 19.
    Algarra, A.G., Basallote, M.G., Fernández-Trujillo, M.J., et al., Inorg. Chem., 2007, vol. 46, p. 7668.CrossRefGoogle Scholar
  20. 20.
    Basallote, M.G., Fernández-Trujillo, M.J., Pino-Chamorro, J.Á., et al., Inorg. Chem., 2012, vol. 51, p. 6794.CrossRefGoogle Scholar
  21. 21.
    Beltrán, T.F., Llusar, R., Sokolov, M.N., et al., Inorg. Chem., 2013, vol. 52, p. 8713.CrossRefGoogle Scholar
  22. 22.
    Sokolov, M.N., Anyushin, A.V., Virovets, A.V., et al., Inorg. Chem. Commun., 2011, vol. 14, p. 1659.CrossRefGoogle Scholar
  23. 23.
    Anyushin, A.V., Sokolov, M.N., Virovets, A.V., et al., Inorg. Chem. Commun., 2012, vol. 24, p. 225.CrossRefGoogle Scholar
  24. 24.
    Anyushin, A.V., Sokolov, M.N., Virovets, A.V., et al., J. Struct. Chem., 2013, vol. 54, p. 638.CrossRefGoogle Scholar
  25. 25.
    Anyushin, A.V., Abramov, P.A., Kompankov, N.B., et al., Russ. J. Coord. Chem., 2013, vol. 39, p. 77.  https://doi.org/10.1134/S1070328412090011 CrossRefGoogle Scholar
  26. 26.
    Anyushin, A.V., Korotaev, E.V., Andreeva, A.Yu., et al., Russ. Chem. Bull., 2016, p. 173.Google Scholar
  27. 27.
    Falcone, D.D., Hack, J.H., and Klyushin, A.Yu, ACS Catal., 2015, vol. 5, p. 5679.CrossRefGoogle Scholar
  28. 28.
    Takeda, Y., Tamura, M., Nakagawa, Y., et al., Catal. Sci. Technol., 2016, vol. 6, p. 5668.CrossRefGoogle Scholar
  29. 29.
    Jothimurugesan, K., Nayak, A.K., Mehta, G.K., et al., AIChE J., 1985, vol. 31, p. 1997.CrossRefGoogle Scholar
  30. 30.
    Fung, A.S., Kelley, M.J., and Gates, B.C., J. Mol. Catal., 1992, vol. 71, p. 215.CrossRefGoogle Scholar
  31. 31.
    Fung, A.S., Tooley, P.A., McDevitt, M.R., et al., Polyhedron, 1988, vol. 7, p. 2421.CrossRefGoogle Scholar
  32. 32.
    Nashner, M.S., Somerville, D.M., Lane, P.D., et al., J. Am. Chem. Soc., 1996, vol. 118, p. 12964.CrossRefGoogle Scholar
  33. 33.
    Ma, L., Wilson, S.R., and Sharpley, J.R., J. Am. Chem. Soc., 1994, vol. 116, p. 787.CrossRefGoogle Scholar
  34. 34.
    Adams, R.D. and Falloon, S.B., J. Am. Chem. Soc., 1994, vol. 116, p. 10540.CrossRefGoogle Scholar
  35. 35.
    Adams, R.D. and Falloon, S.B., Organometallics, 1995, vol. 14, p. 1748.CrossRefGoogle Scholar
  36. 36.
    Cotton, F.A., Lippard, S.J., and Mague, T.J., Inorg. Chem., 1965, vol. 4, p. 508.CrossRefGoogle Scholar
  37. 37.
    Johnson, N.P., Lock, C.J.L., and Wilkinson, G., J. Chem. Soc., 1964, p. 1054.Google Scholar
  38. 38.
    Cotton, F.A. and Walton, R.A., Inorg. Chem., 1966, vol. 5, p. 1802.CrossRefGoogle Scholar
  39. 39.
    Ferguson, J.E. and Hickford, J.H., Inorg. Chim. Acta, 1968, vol. 2, p. 475.CrossRefGoogle Scholar
  40. 40.
    Ebner, J.R. and Walton,s W., Inorg. Chem., 1975, vol. 14, p. 1987.CrossRefGoogle Scholar
  41. 41.
    Esjornson, S.M.V., Fanwick, P.E., and Walton, R., Polyhedron, 1990, vol. 9, p. 1165.CrossRefGoogle Scholar
  42. 42.
    Kolbin, N.I. and Ovchinnikov, K.V., Zh. Neorg. Khim., 1968, vol. 13, p. 1190.Google Scholar
  43. 43.
    Sheldrick, G.M., SADABS, Göttingen: Univ. of Göttingen, 1996.Google Scholar
  44. 44.
    Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.CrossRefGoogle Scholar
  45. 45.
    Hübschle, C.B., Sheldrick, G.M., and Dittrich, B., J. Appl. Crystallogr., 2011, vol. 44, p. 1281.CrossRefGoogle Scholar
  46. 46.
    Hoye, P.A.T., Pringle, P.G., Smith, M.B., et al., Dalton Trans., 1993, p. 269.Google Scholar
  47. 47.
    Lorenzini, F., Patrick, B.O., and James, B.R., Inorg. Chem., 2007, vol. 46, p. 8998.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Anyushin
    • 1
  • P. A. Abramov
    • 1
    • 2
  • M. N. Sokolov
    • 1
    • 2
    • 3
    Email author
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations