Advertisement

Russian Journal of Coordination Chemistry

, Volume 44, Issue 12, pp 800–805 | Cite as

A Novel Layer Crystal Structure of Sr(II) Complex based on 2-methyl-1H-imidazole-4,5-dicarboxylate Ligand

  • K. Zhou
  • F. YueEmail author
  • H. M. Chen
  • T. T. Liu
  • J. D. WangEmail author
Article
  • 5 Downloads

Abstract

A layer coordination polymer of [Sr(H2MIDC)2(H2O)2]n, (H3MIDC = 2-methyl-1H-imidazole-4,5-dicarboxylate) has been synthesized and characterized. Single X-ray structural analysis indicates the title compound crystallizes in a monoclinic lattice, P21/n with a = 6.902(1) b = 14.469(3), c = 16.641(3) Å, β = 98.58(3)°, Z = 4, V = 1643.2(6) Å3, ρc = 1.867 g/cm3, F(000) = 928, S = 1.079, R1 = 0.1346, wR2 = 0.3892 (CIF file CCDC no. 791212). Crystal structure analysis reveals that Sr2+ ion is eight-coordinate and lies in a bicapped tetragonal bipyramid environment with one nitrogen atom and seven oxygen atoms. For the variaties of the ligand’s coordination modes and the bridging oxygen atom in carboxylate group, the structure presents a two-dimensional layer molecular network. This coordination polymer exhibited intense fluorescent emissions in the solid state at room temperature.

Keywords:

2-methyl-1H-imidazole-4,5-dicarboxylate strontium coordination polymer 

Notes

ACKNOWLEDGMENTS

Financial support from the National Natural Science Foundation of China (nos. 21162027, 21261022) and the Xinjiang University college student innovation training program in 2017 (XJU-SRT-17022) is gratefully acknowledged.

REFERENCES

  1. 1.
    Zhong, R.Q., Zou, R.Q., Du, M., et al., Cryst. Eng. Commun., 2008, vol. 10, no. 9, p. 1175.CrossRefGoogle Scholar
  2. 2.
    Zhou, H.C., Long, J.R., Yaghi, O.M., et al., Chem. Rev., 2012, vol. 112, no. 2, p. 673.CrossRefGoogle Scholar
  3. 3.
    Hanusa, T.P., Coord. Chem. Rev., 2000, vol. 210, no. 1, p. 329.CrossRefGoogle Scholar
  4. 4.
    Gilman, H., Meals, R.N., O’Donnell, G., et al., J. Am. Chem. Soc., 2002, vol. 65, no. 2, p. 268.CrossRefGoogle Scholar
  5. 5.
    Starosta, W., Janusz, L., Thathan, P., et al., Coord. Chem., 2006, vol. 59, no. 5, p. 557.CrossRefGoogle Scholar
  6. 6.
    Li, H., Feng, H., Xie, Y., et al., Chemistry, 2016, vol. 22, no. 42, p. 15019.CrossRefGoogle Scholar
  7. 7.
    Yu, X.Y., Zhang, X., Liu, Z.G., et al., J. Mol. Struct., 2017, vol. 1147, p. 747.CrossRefGoogle Scholar
  8. 8.
    Li, Y., Lu, X., Jing, H., et al., Inorg. Chim. Acta, 2017, vol. 467, p. 117.CrossRefGoogle Scholar
  9. 9.
    Dang, F., Wang, X., Han, G., et al., Monatsh. Chem., 2009, vol. 140, no. 6, p. 615.CrossRefGoogle Scholar
  10. 10.
    Gao, Y.C., Liu, Q.H., Zhang, F.W., et al., Polyhedron, 2011, vol. 30, no. 1, p. 1.CrossRefGoogle Scholar
  11. 11.
    Wang, Y.L., Yuan, D.Q., Bi, W.H., et al., Cryst. Growth Des., 2005, vol. 5, no. 5, p. 1849.CrossRefGoogle Scholar
  12. 12.
    Gu, Z.G., Li, G.Z., Yin, P.Y., et al., Inorg Chem. Commun., 2011, vol. 14, no. 9, p. 1479.CrossRefGoogle Scholar
  13. 13.
    Chen, N., Wang, C.J., Guo, M.W., et al., Synt. React. Inorg. Met.-Org. Chem., 2012, vol. 42, no. 7, p. 981.CrossRefGoogle Scholar
  14. 14.
    Cook, T.R., Zheng, Y.R., and Stang, P.J., Chem. Inform., 2013, vol. 113, no. 1, p. 734.Google Scholar
  15. 15.
    Andson, W.K., Bhattacharjee, D., and Houston, D.M., J. Med. Chem., 1989, vol. 32, no. 1, p. 119.CrossRefGoogle Scholar
  16. 16.
    Sheldrick, G.M., SHEIXIL NT, Version 5.1, Program for Solution and Refinement of Crystal Structures, Göttingen: Univ. of Göttingen, 1997.Google Scholar
  17. 17.
    Cui, P., Chen, Z., Gao, D.L., et al., Cryst. Growth Des., 2010, vol. 10, no. 10, p. 4370.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, College of Chemistry and Chemical Engineering of Xinjiang UniversityUrumqiP.R. China
  2. 2.Xinjiang Shihezi Vocational Technical CollegeShiheziP.R. China

Personalised recommendations