Russian Journal of Coordination Chemistry

, Volume 45, Issue 1, pp 11–21 | Cite as

Coordination Polymers of Zn and Cd Based on Two Isomeric Azine Ligands: Synthesis, Crystal Structures, and Luminescence Properties

  • V. Lozovan
  • E. B. CoropceanuEmail author
  • P. N. Bourosh
  • A. Micu
  • M. S. FonariEmail author


Metal-organic 1D coordination polymers of Zn(II) and Cd(II), [{Zn(3-Bphz)(H2O)4}(3-Bphz)(NO3)2]n (I), [Zn(3-Bphz)I2]n (II), [Cd(3-Bphz)I2]n (III), [Cd(4-Bphz)(CH3COO)2(H2O)]n (IV), and [Cd(4-Bphz)(NO3)2(H2O)2]n (V), containing azines of the N,N' type, 1,2-bis(pyridin-3-ylmethylene)hydrazine (3-Bphz) and 1,2-bis(pyridin-4-ylmethylene)hydrazine (4-Bphz), as bridging ligands are synthesized. The compositions and structures of the compounds are confirmed by the data of elemental analysis, IR and NMR spectroscopy, and single-crystal X-ray diffraction analysis (CIF files CCDC nos. 1812634–1812638 for I–V). Coordination polymers I–III have zigzag structures. The octahedral environment of the Zn2+ ion in compound I is formed by two 3-Bphz ligands and four water molecules. The external sphere contains nitrate anions and uncoordinated 3-Bphz molecules. In isomorphous compounds II and III, the tetrahedral environment of the metal is formed by two nitrogen atoms of two bridging 3-Bphz ligands and two iodine atoms. Coordination polymers IV and V are linear. The coordination polyhedron of the Cd2+ ion in compound IV is a pentagonal bipyramid, two vertices of which are occupied by the nitrogen atoms of two 4-Bphz molecules, and the equatorial plane is formed by two bidentate-chelating acetate anions and one water molecule. In compound V, the octahedral environment of the Сd2+ ion is formed by two molecules of the 4-Bphz ligand, two monodentate nitrate anions, and two water molecules. All complexes are weak luminophores emitting in the blue-green spectral range.


azine ligands coordination polymers crystal structure luminescence 



  1. 1.
    Janiak, C., Dalton Trans., 2003, p. 2781.Google Scholar
  2. 2.
    Robin, A.Y. and Fromm, K.M., Coord. Chem. Rev., 2006, vol. 250, p. 2127.CrossRefGoogle Scholar
  3. 3.
    Rowsell, J.L.C. and Yaghi, O.M., Microporous Mesoporous Mater., 2004, vol. 73, p. 3.CrossRefGoogle Scholar
  4. 4.
    Croitor, L., Coropceanu, E., Masunov, A., et al., J. Phys. Chem., 2014, vol. 118, p. 9217.Google Scholar
  5. 5.
    Coropceanu, E., Rija, A., Lozan, V., et al., Cryst. Growth Des., 2016, vol. 16, p. 814.CrossRefGoogle Scholar
  6. 6.
    Croitor, L., Coropceanu, E., Chisca, D., et al., Cryst. Growth Des., 2014, vol. 14, p. 3015.CrossRefGoogle Scholar
  7. 7.
    Coropceanu, E.B., Croitor, L., Wicher, B., et al., Inorg. Chim. Acta, 2009, vol. 362, p. 2151.CrossRefGoogle Scholar
  8. 8.
    Croitor, L., Coropceanu, E., Petuhov, O., et al., Dalton Trans., 2015, vol. 44, p. 7896.CrossRefGoogle Scholar
  9. 9.
    Chisca, D., Croitor, L., Coropceanu, E., et al., Cryst-EngComm, 2016, vol. 18, p. 384.CrossRefGoogle Scholar
  10. 10.
    Chen, C.-L., Kang, B.-S., and Su, C.-Y., Aust. J. Chem., 2006, vol. 59, p. 3.CrossRefGoogle Scholar
  11. 11.
    Robinson, F. and Zaworotko, M.J., Chem. Commun., 1995, p. 2413.Google Scholar
  12. 12.
    Sailaja, S. and Rajasekharan, M.V., Inorg. Chem., 2000, vol. 39, p. 4586.CrossRefGoogle Scholar
  13. 13.
    Du, M., Bu, X.-H., Huang, Z., et al., Inorg. Chem., 2003, vol. 42, p. 552.CrossRefGoogle Scholar
  14. 14.
    Gao, E.-Q., Cheng, A.-L., Xu, Y.-X., et al., Cryst. Growth Des., 2005, vol. 5, p. 1005.CrossRefGoogle Scholar
  15. 15.
    MacGillivray L.R., Groeneman, R.H., and Atwood, L., J. Am. Chem. Soc., 1998, vol. 120, p. 2676.CrossRefGoogle Scholar
  16. 16.
    Liu, Y.-Y., Yi, L., Ding, B., et al., Inorg. Chem. Commun., 2007, vol. 10, p. 517.CrossRefGoogle Scholar
  17. 17.
    Zhang, G.-Q., Yang, G.-Q., and Ma, J.-S., Cryst. Growth Des., 2006, vol. 6, p. 1897.CrossRefGoogle Scholar
  18. 18.
    Kumar, D.K., Das, A., and Dastidar, P., Cryst. Growth Des., 2006, vol. 6, p. 1903.CrossRefGoogle Scholar
  19. 19.
    Huang, X.-C., Zhang, J.-P., and Chen, X.-M., Cryst. Growth Des., 2006, vol. 6, p. 1194.CrossRefGoogle Scholar
  20. 20.
    Oh, M., Stern, C.L., and Mirkin, C.A., Inorg. Chem., 2005, vol. 44, p. 2647.CrossRefGoogle Scholar
  21. 21.
    Ciurtin, D.M., Dong, Y.-B., Smith, M.D., et al., Inorg. Chem., 2001, vol. 40, p. 2825.CrossRefGoogle Scholar
  22. 22.
    Diskin-Posner, Y., Patra, G.K., and Goldberg, I., Dalton Trans., 2001, p. 2775.Google Scholar
  23. 23.
    Gao, E.-Q., Cheng, A.-L., Xu, Y.-X., et al., Inorg. Chem., 2005, vol. 44, p. 8822.CrossRefGoogle Scholar
  24. 24.
    Withersby, M.A., Blake, A.J., Champness, N.R., et al., Inorg. Chem., 1999, vol. 38, p. 2259.CrossRefGoogle Scholar
  25. 25.
    Carlucci, L., Ciani, G., and Proserpio, D.M., J. Chem. Soc., Dalton Trans. (1972–1999), 1999, p. 1799.Google Scholar
  26. 26.
    Dong, Y.-B., Smith, M.D., Layland, R.C., and zur Loye, H.-C., Chem. Mater., 2000, vol. 12, p. 1156.CrossRefGoogle Scholar
  27. 27.
    Yang, W. and Xiang Lin, X., Inorg. Chem., 2009, vol. 48, no. 23, p. 11067.CrossRefGoogle Scholar
  28. 28.
    Granifo, J., Moreno, Y., Garland, M.T., et al., J. Mol. Struct., 2010, vol. 983, p. 76.CrossRefGoogle Scholar
  29. 29.
    Jung, O.-S., Park, S.H., Kim, K.M., and Jang, H.G., Inorg. Chem., 1998, vol. 37, p. 5781.CrossRefGoogle Scholar
  30. 30.
    Zaman, M.B., Smith, M.D., Ciurtin, D.M., and zur Loye, H.-C., Inorg. Chem., 2002, vol. 41, p. 4895.CrossRefGoogle Scholar
  31. 31.
    Chen, C.-L., Goforth, A.M., Smith, M.D., et al., Inorg. Chem., 2005, vol. 44, p. 8762.CrossRefGoogle Scholar
  32. 32.
    Patra, G.K. and Glodberg, I., Cryst. Growth Des., 2003, vol. 3, p. 321.CrossRefGoogle Scholar
  33. 33.
    Chen, C.-L., Kang, B.-S., and Su, C.-Y., Aust. J. Chem., 2006, vol. 59, p. 3.CrossRefGoogle Scholar
  34. 34.
    Dong, Y.-B., Layland, R.C., Smith, M.D., et al., Inorg. Chem., 1999, vol. 38, p. 3056.CrossRefGoogle Scholar
  35. 35.
    Cui, Y., Ngo, H.L., and Lin, W., Chem. Commun., 2003, p. 1388.Google Scholar
  36. 36.
    Chen, C.-T. and Suslick, K.S., Coord. Chem. Rev., 1993, vol. 128, p. 293.CrossRefGoogle Scholar
  37. 37.
    Leong, W.L. and Vittal, J.J., Chem. Rev., 2011, vol. 111, p. 688.CrossRefGoogle Scholar
  38. 38.
    Song, Y., Yu, L., Gao, Y., et al., Inorg. Chem., 2017, vol. 56, p. 11603.CrossRefGoogle Scholar
  39. 39.
    Miyasaka, H., Julve, M., Yamashita, M., and Clérac, R., Inorg. Chem., 2009, vol. 48, p. 3420.CrossRefGoogle Scholar
  40. 40.
    Mahmoudi, G., Gurbanov, A.V., Rodríguez-Hermida, S., et al., Inorg. Chem., 2017, vol. 56, p. 9698.CrossRefGoogle Scholar
  41. 41.
    Kennedy, A.R. and Waterson, F.R.N., Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2003, vol. 59, p. o613.CrossRefGoogle Scholar
  42. 42.
    Calahorro, A.J., San Sebastian, E., Salinas-Castil-lo, A., et al., CrystEngComm, 2015, vol. 17, p. 3659.CrossRefGoogle Scholar
  43. 43.
    Manna, B., Singh, S., and Ghosh, S.K., J. Chem. Sci., 2014, vol. 126, no. 5, p. 1417.CrossRefGoogle Scholar
  44. 44.
    Croitor, L., Coropceanu, E.B., Siminel, A.V., et al., Cryst. Growth Des., 2011, vol. 11, p. 3536.CrossRefGoogle Scholar
  45. 45.
    Croitor, L., Coropceanu, E.B., Masunov, A.E., et al., Cryst. Growth Des., 2014, vol. 14, p. 3935.CrossRefGoogle Scholar
  46. 46.
    Croitor, L., Coropceanu, E.B., Duca, G., et al., Polyhedron, 2017, vol. 129, p. 9.CrossRefGoogle Scholar
  47. 47.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, p. 112.CrossRefGoogle Scholar
  48. 48.
    Paulin, S., Kelly, P., Williams, K.B., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, vol. 63, р. m420.Google Scholar
  49. 49.
    Wang, Q., Liang, B., Zhang, J.-Y., et al., Z. Anorg. Allg. Chem., 2007, vol. 633, p. 2463.CrossRefGoogle Scholar
  50. 50.
    Mahmoudi, G., Morsali, A., Hunter, A.D., and Zeller, M., CrystEngComm, 2007, vol. 9, p. 704.CrossRefGoogle Scholar
  51. 51.
    Metelitsa, A.V., Burlov, A.S., and Borodkina, I.G., et al., Russ. J. Coord. Chem., 2006, vol. 32, no. 12, p. 858. doi 10.1134/S1070328406120025CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of ChemistryChisinauRepublic of Moldova
  2. 2.Tiraspol State UniversityChisinauRepublic of Moldova
  3. 3.Institute of Applied PhysicsChisinauRepublic of Moldova

Personalised recommendations