Russian Journal of Coordination Chemistry

, Volume 45, Issue 1, pp 22–29 | Cite as

Pseudo-Polymeric Mercury(II) Morpholinedithiocarbamate [Hg{S2CN(CH2)4O}2]n: Supramolecular Structure (a Role of Secondary Hg···S Bonds), 13C and 15N CP-MAS NMR Spectra, and Thermal Behavior

  • O. V. Loseva
  • T. A. Rodina
  • A. V. IvanovEmail author


A new representative of mercury(II) dithiocarbamate complexes, crystalline bis(morpholinedithiocarbamato-S,S')mercury(II) with the pseudo-1D-polymeric structure, is preparatively synthesized. The structure is characterized by 13С and 15N MAS NMR spectroscopy and X-ray diffraction analysis (CIF file CCDC no. 1821609). Pairs of symmetric secondary Hg⋅⋅⋅S bonds (3.400 Å) combine mononuclear [Hg{S2CN(CH2)4O}2] molecules, including planar polygons [HgS4], into a linear pseudo-polymeric chain. The study of the thermal behavior shows that the two-stage mass loss detected by thermogravimetry is due to the thermal destruction of the complex with the formation of HgS and its subsequent sublimation.


mercury(II) alkylenedithiocarbamates structural organization secondary bonds Hg⋅⋅⋅S X-ray diffraction analysis multinuclear (1315N) MAS NMR spectroscopy simultaneous thermal analysis 



The authors are grateful to Prof. O.N. Antsutkin and Dr. V. Gowda (Luleå University of Technology, Sweden) for the kindly presented possibility and help in recording 13С and 15N MAS NMR spectra.


  1. 1.
    Dar, S.H., Thirumaran, S., and Selvanayagam, S., Polyhedron, 2015, vol. 96, p. 16.CrossRefGoogle Scholar
  2. 2.
    Srinivasan, N., Thirumaran, S., and Ciattini, S., RSC Adv., 2014, vol. 4, no. 44, p. 22971.CrossRefGoogle Scholar
  3. 3.
    Onwudiwe, D.C. and Ajibade, P.A., Mater. Lett., 2011, vol. 65, nos. 21−22, p. 3258.CrossRefGoogle Scholar
  4. 4.
    Yadav, M.K., Rajput, G., Gupta, A.N., et al., Inorg. Chim. Acta, 2014, vol. 421, p. 210.CrossRefGoogle Scholar
  5. 5.
    Rajput, G., Yadav, M.K., Thakur, T.S., et al., Polyhedron, 2014, vol. 69, p. 225.CrossRefGoogle Scholar
  6. 6.
    Loseva, O.V., Rodina, T.A., Smolentsev, A.I., and Ivanov, A.V., Russ. J. Coord. Chem., 2016, vol. 42, no. 11, p. 719. CrossRefGoogle Scholar
  7. 7.
    Loseva, O.V., Rodina, T.A., Smolentsev, A.I., and Ivanov, A.V., Polyhedron, 2017, vol. 134, p. 238.CrossRefGoogle Scholar
  8. 8.
    Mercuri, M.L., Serpe, A., Marchio, L., et al., Inorg. Chem. Comm., 2014, vol. 39, p. 47.CrossRefGoogle Scholar
  9. 9.
    Cox, M.J. and Tiekink, E.R.T., Z. Kristallogr., 1997, vol. 212, no. 7, p. 542.Google Scholar
  10. 10.
    Iwasaki, H., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1973, vol. 29, no. 10, p. 2115.CrossRefGoogle Scholar
  11. 11.
    Healy, P.C. and White, A.H., J. Chem. Soc., Dalton Trans., 1973, no. 3, p. 284.Google Scholar
  12. 12.
    Howie, R.A., Tiekink, E.R.T., Wardell, J.L., and Wardell, S.M.S.V., J. Chem. Crystallogr., 2009, vol. 39, no. 4, p. 293.CrossRefGoogle Scholar
  13. 13.
    Ito, M. and Iwasaki, H., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1979, vol. 35, no. 11, p. 2720.CrossRefGoogle Scholar
  14. 14.
    Iwasaki, H., Ito, M., and Kobayashi, K., Chem. Lett., 1978, vol. 7, p. 1399.CrossRefGoogle Scholar
  15. 15.
    Cox, M.J. and Tiekink, E.R.T., Z. Kristallogr., 1999, vol. 214, no. 9, p. 571.Google Scholar
  16. 16.
    Cox, M.J. and Tiekink, E.R.T., Main Group Met. Chem., 2000, vol. 23, no. 12, p. 793.CrossRefGoogle Scholar
  17. 17.
    Onwudiwe, D.C. and Ajibade, P.A., J. Chem. Crystallogr., 2011, vol. 41, no. 7, p. 980.CrossRefGoogle Scholar
  18. 18.
    Altaf, M., Stoeckli-Evans, H., Batool, S.S., et al., J. Coord. Chem., 2010, vol. 63, no. 7, p. 1176.CrossRefGoogle Scholar
  19. 19.
    Ivanov, A.V., Korneeva, E.V., Bukvetskii, B.V., et al., Russ. J. Coord. Chem., 2008, vol. 34, no. 1, p. 59. CrossRefGoogle Scholar
  20. 20.
    Onwudiwe, D.C. and Ajibade, P.A., Int. J. Mol. Sci., 2011, vol. 12, no. 3, p. 1964.CrossRefGoogle Scholar
  21. 21.
    Jotani, M.M., Tan, Y.S., and Tiekink, E.R.T., Z. Kristallogr., 2016, vol. 231, no. 7, p. 403.Google Scholar
  22. 22.
    Bond, A.M., Colton, R., Hollenkamp, A.F., et al., J. Am. Chem. Soc., 1987, vol. 109, no. 7, p. 1969.CrossRefGoogle Scholar
  23. 23.
    Byr’ko, V.M., Ditiokarbamaty (Dithiocarbamates), Moscow: Nauka, 1984.Google Scholar
  24. 24.
    Ivanov, A.V., Ivakhnenko, E.V., Gerasimenko, A.V., and Forsling, W., Russ. J. Inorg. Chem., 2003, vol. 48, no. 1, p. 45.Google Scholar
  25. 25.
    Pines, A., Gibby, M.G., and Waugh, J.S., J. Chem. Phys., 1972, vol. 56, no. 4, p. 1776.CrossRefGoogle Scholar
  26. 26.
    Ratcliffe, C.I., Ripmeester, J.A., and Tse, J.S., Chem. Phys. Lett., 1983, vol. 99, no. 2, p. 177.CrossRefGoogle Scholar
  27. 27.
    APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), SHELXTL (version 6.12), Madison: Bruker AXS Inc., 2004.Google Scholar
  28. 28.
    Hexem, J.G., Frey, M.H., and Opella, S.J., J. Chem. Phys., 1982, vol. 77, no. 7, p. 3847.CrossRefGoogle Scholar
  29. 29.
    Harris, R.K., Jonsen, P., and Packer, K.J., Magn. Res. Chem., 1985, vol. 23, no. 7, p. 565.CrossRefGoogle Scholar
  30. 30.
    Winter, M., WebElements Periodic Table of the Elements, Accessed January, 2010.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Geology and Nature Management, Far East Branch, Russian Academy of SciencesBlagoveshchenskRussia
  2. 2.Amur State UniversityBlagoveshchenskRussia

Personalised recommendations