Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 1, pp 1–10 | Cite as

Complexes of Co(II), Ni(II), and Cu(II) with (Z)-10-(2-(4-Amino-5-Thioxo-4,5-Dihydro-1H-1,2,4-Triazol-3-yl)hydrazono)-9-Phenanthrone: Synthesis, Spectral Studies, and Quantum Chemical Simulation of the Structures

  • R. V. LinkoEmail author
  • N. A. Polyanskaya
  • M. A. Ryabov
  • V. S. Sergienko
  • P. V. Strashnov
  • V. V. Davydov
  • G. M. Drogova
Article
  • 4 Downloads

Abstract

The complexes of (Z)-10-(2-(4-amino-5-thioxo-4,5-dihydro-1Н-1,2,4-triazol-3-yl)hydrazono)-9-phenanthrone (HL) with the Co(II), Ni(II), and Cu(II) salts, [CoLAcDMF] (I), [NiLAcDMF] (II), [CuL(Н2О)]ClO4 (III), and [CuLAc] (IV), are synthesized and studied. The titration of a solution of HL in DMF with aqueous solutions of CoAc2, NiAc2, Cu(ClO4)2, CuAc2, Cd(NO3)2, or ZnSO4 leads to the bathochromic shift of the long-wavelength absorption band by 35–77 nm in the UV spectra. The formation constants and compositions of the complexes in solutions are determined from the results of titration. The structures of complexes I–IV are proposed on the basis of the DFT calculations and spectral data: the ligand being in the deprotonated form of the thione tautomer is coordinated by the metal cations through the oxygen atom of the carbonyl group and the nitrogen atoms of the hydrazo and amino groups to form two metallocycles, six- and five-membered (6 + 5). The coordination mode is completed by the acetate ion and DMF molecule (in I and II), acetate ion (in IV), or Н2О molecule (in III).

Keywords:

quantum chemical calculations heterocyclic azo derivatives 9,10-phenanthrenequinone spectral studies 

Notes

ACKNOWLEDGMENTS

The publication has been prepared with the support of the RUDN University Program 5-100.

REFERENCES

  1. 1.
    Wunderlich, H. and Wolfrum, G., Fr. Patent 1.442.867, 1966.Google Scholar
  2. 2.
    Foster, C.E. and James, R.A., WO Patent 125951 A2, 2006.Google Scholar
  3. 3.
    Tosaki, Y.I., Hosaka, T.Y., Kunieda, T.M., et al., US Patent 6.551.682, 2003.Google Scholar
  4. 4.
    Davydov, V.V., Rychagina, N.V., Linko, R.V., et al., Russ. J. Inorg. Chem., 2009, vol. 54, no. 6, p. 893. doi 10.1134/S0036023609060126Google Scholar
  5. 5.
    Davydov, V.V., Polyanskaya, N.A., Linko, R.V., et al., Crystallogr. Rep., 2012, vol. 57, no. 2, p. 227.  https://doi.org/10.7868/S0044457X14010097 CrossRefGoogle Scholar
  6. 6.
    Linko, R.V., Polyanskaya, N.A., Ryabov, M.A., et al., Russ. J. Inorg. Chem., 2013, vol. 58, no. 3, p. 284.  https://doi.org/10.1134/S0036023613030091 CrossRefGoogle Scholar
  7. 7.
    Davydov, V.V., Rychagina, N.V., Linko, R.V., et al., Russ. J. Inorg. Chem., 2011, vol. 56, no. 5, p. 680.  https://doi.org/10.1134/S003602361105007X CrossRefGoogle Scholar
  8. 8.
    Linko, R.V., Polyanskaya, N.A., Ryabov, M.A., et al., Russ. J. Inorg. Chem., 2013, vol. 58, no. 2, p. 144.  https://doi.org/10.1134/S0036023613020150 CrossRefGoogle Scholar
  9. 9.
    Linko, R.V., Polyanskaya, N.A., Ryabov, M.A., et al., Crystallogr. Rep., 2013, vol. 58, no. 3, p. 427.  https://doi.org/10.1134/S1063774513030103 CrossRefGoogle Scholar
  10. 10.
    Linko, R.V., Polyanskaya, N.A., Ryabov, M.A., et al., Russ. J. Inorg. Chem., 2013, vol. 58, no. 12, p. 1457.  https://doi.org/10.1134/S0036023614010094 CrossRefGoogle Scholar
  11. 11.
    Davydov, V.V., Rychagina, N.V., Linko, R.V., et al., Russ. J. Inorg. Chem., 2014, vol. 59, no. 9, p. 927.  https://doi.org/10.1134/S0036023614090046 CrossRefGoogle Scholar
  12. 12.
    Pandeya, S.N., Sriram, D., Nath, G., et al., Arzneimittelforschung, 2000, vol. 50, no. 10, p. 55.  https://doi.org/10.1055/s-0031-1300164 Google Scholar
  13. 13.
    Holla, B.S., Poojary, K.N., Kalluraya, B., and Gowda, P.V., Farmaco, 1996, vol. 51, p. 793.Google Scholar
  14. 14.
    Labanauskas, L., Kalcas, V., Udrenaite, E., et al., Pharmazie, 2001, vol. 56, no. 8, p. 617.Google Scholar
  15. 15.
    Kamble, P.N., Mote, D.A., Chalke, S.A., et al., Intern. J. Univ. Pharm. Bio Sci., 2015, vol. 4, no. 4, p. 13.Google Scholar
  16. 16.
    Ulusoy, N.G., Ergenc, N., Otuk, G., and Kiraz, M., Boll. Chim. Farm., 2001, vol. 140, no. 6, p. 417.Google Scholar
  17. 17.
    Akbarzadeh, T., Tabatabai, S.A., Khoshnoud, M.J., et al., Bioorg. Med. Chem., 2003, vol. 11, no. 5, p. 769.CrossRefGoogle Scholar
  18. 18.
    Haddad, R., Yousif, E., and Ahmed, A., SpringerPlus, 2013, vol. 2, p. 510.  https://doi.org/10.1186/2193-1801-2-510 CrossRefGoogle Scholar
  19. 19.
    Polyanskaya, N.A., Ryabov, M.A., Strashnov, P.V., et al., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2018, vol. 61, no. 1, p. 55. doi 10.6060/tcct. 20186101.5677CrossRefGoogle Scholar
  20. 20.
    Beck, T. and Nagypal, I., Chemistry of Complex Equilibria, Chichester: Ellis Horwood, 1990.Google Scholar
  21. 21.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.CrossRefGoogle Scholar
  22. 22.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.CrossRefGoogle Scholar
  23. 23.
    Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, p. 11623.CrossRefGoogle Scholar
  24. 24.
    Schaefer, A., Huber, C., and Ahlrichs, R., J. Chem. Phys., 1994, vol. 100, p. 5829.CrossRefGoogle Scholar
  25. 25.
    NBO 5G, Madison: Theoretical Chemistry Institute, Univ. of Wisconsin, 2004.Google Scholar
  26. 26.
    Granovsky, A., Firefly version 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html.Google Scholar
  27. 27.
    Yousif, E., Haddad, R., Ameer, A.A., et al., Eur. J. Chem., 2014, vol. 5, no. 4, p. 607.CrossRefGoogle Scholar
  28. 28.
    Sharov K.S. and Ivanov V.M., Vestn. Mosk. Univ. Ser. Khim., 2003, vol. 44, no. 6, p. 397.Google Scholar
  29. 29.
    Janiak, C., Dalton Trans., 2000, no. 22, p. 3885.Google Scholar
  30. 30.
    Shundalau, M.B., Chibirai, P.S., Komyak, A.I., et al., J. Appl. Spectrosc., 2011, vol. 78, no. 3, p. 326.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. V. Linko
    • 1
    Email author
  • N. A. Polyanskaya
    • 1
  • M. A. Ryabov
    • 1
  • V. S. Sergienko
    • 2
  • P. V. Strashnov
    • 3
  • V. V. Davydov
    • 1
  • G. M. Drogova
    • 1
  1. 1.Peoples Friendship University of Russia (RUDN University)MoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia

Personalised recommendations