Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 1, pp 36–41 | Cite as

Effect of Synthesis Conditions on the Molecular and Crystal Structures of Heterometallic 1D-Polymeric Acetate Complexes with the {Dy2Co}n Motif

  • A. V. GavrikovEmail author
  • A. B. Ilyukhin
  • N. N. Efimov
Article
  • 2 Downloads

Abstract

New heterometallic 1D-polymeric acetate complexes with the {Dy2Co}n motif of the metallic framework, [Dy2Co(CH3COOO)8(H2O)4]n ∙ 6nH2O (I) and [Dy2Co(CH3COOO)8(H2O)2]n ∙ 2nCH3COOH (II), are synthesized and studied. The molecular structures of the obtained compounds (CIF files CCDC nos. 1861619 (I) and 1861620 (II)) differ by the qualitative composition of the coordination environment of Dy as well as by the coordination modes of the acetate anions, which substantially affects the lengths of the corresponding Dy···Dy and Dy···Co distances in the chain. The mentioned distinctions and different solvate compositions of I and II are determined by the synthesis conditions of the complexes.

Keywords:

heterometallic coordination compounds 1D-polymeric complexes carboxylate complexes dysprosium crystal structure 

Notes

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the JRC PMR IGIC RAS).

This work was supported by the Russian Science Foundation, project no. 16-13-10407.

REFERENCES

  1. 1.
    Winpenny, R.E.P., Chem. Soc. Rev., 1998, vol. 27, no. 6, p. 447.CrossRefGoogle Scholar
  2. 2.
    Sakamoto, M., Manseki, K., and Ō͘kawa, H., Coord. Chem. Rev., 2001, vols. 219−221, p. 379.CrossRefGoogle Scholar
  3. 3.
    Andruh, M., Costes, J.-P., Diaz, C., and Gao, S., Inorg. Chem., 2009, vol. 48, no. 8, p. 3342.CrossRefGoogle Scholar
  4. 4.
    Benelli, C. and Gatteschi, D., Chem. Rev., 2002, vol. 102, no. 6, p. 2369.CrossRefGoogle Scholar
  5. 5.
    Huang, Y.-G., Wang, X.-T., Jiang, F.-L., et al., Chem.-Eur. J., 2008, vol. 14, no. 33, p. 10340.CrossRefGoogle Scholar
  6. 6.
    Zaleski, C.M., Depperman, E.C., Kampf, J.W., et al., Angew. Chem., Int. Ed., 2004, vol. 43, no. 30, p. 3912.CrossRefGoogle Scholar
  7. 7.
    Huang, Y.-G., Jiang, F.-L., and Hong, M.-C., Coord. Chem. Rev., 2009, vol. 253, no. 23, p. 2814.CrossRefGoogle Scholar
  8. 8.
    He, R., Liang, Q., Song, H.-H., and Wei, Z., Struct. Chem., 2010, vol. 21, no. 5, p. 923.CrossRefGoogle Scholar
  9. 9.
    Dobrohotova, Z.V., Sidorov, A.A., Kiskin, M.A., et al., J. Solid State Chem., 2010, vol. 183, no. 10, p. 2475.CrossRefGoogle Scholar
  10. 10.
    Zauzolkova, N., Dobrokhotova, Z., Lermontov, A., et al., J. Solid State Chem., 2013, vol. 197, p. 379.CrossRefGoogle Scholar
  11. 11.
    Gavrikov, A., Koroteev, P., Ilyukhin, A., et al., Polyhedron, 2017, vol. 122, p. 184.CrossRefGoogle Scholar
  12. 12.
    Gavrikov, A.V., Koroteev, P.S., Dobrokhotova, Z.V., et al., Polyhedron, 2015, vol. 102, p. 48.CrossRefGoogle Scholar
  13. 13.
    Gavrikov, A.V., Koroteev, P.S., Efimov, N.N., et al., Dalton Trans., 2017, vol. 46, no. 10, p. 3369.CrossRefGoogle Scholar
  14. 14.
    Koroteev, P.S., Ilyukhin, A.B., Efimov, N.N., et al., Polyhedron, 2018, vol. 154, p. 54.CrossRefGoogle Scholar
  15. 15.
    Sun, W.-B., Yan, B., Jia, L.-H., et al., Dalton Trans., 2016, vol. 45, no. 21, p. 8790.CrossRefGoogle Scholar
  16. 16.
    Zhang, S., Ke, H., Sun, L., et al., Inorg. Chem., 2016, vol. 55, no. 8, p. 3865.CrossRefGoogle Scholar
  17. 17.
    Binnemans, K., in Handbook on the Physics and Chemistry of Rare Earths., Gschneidner, K.A., Bunzli, J.-C.G., Pecharsky, V.K., Eds., Elsevier, 2005, vol. 35, p. 107.Google Scholar
  18. 18.
    APEX II and SAINT, Madison: Bruker AXS Inc., 2007.Google Scholar
  19. 19.
    Sheldrick, G.M., SADABS, Göttingen: Univ. of Göttingen, 1997.Google Scholar
  20. 20.
    Sheldrick, G., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, no. 1, p. 3.Google Scholar
  21. 21.
    Gavrikov, A.V., Efimov, N.N., Dobrokhotova, Z.V., et al., Dalton Trans., 2017, vol. 46, no. 35, p. 11806.CrossRefGoogle Scholar
  22. 22.
    Gavrikov, A.V., Efimov, N.N., Ilyukhin, A.B., et al., Dalton Trans., 2018, vol. 47, no. 17, p. 6199.CrossRefGoogle Scholar
  23. 23.
    Pham, H.H., Taylor, C.D., and Henson, N.J., Chem. Phys. Lett., 2014, vols. 610−611, p. 141.CrossRefGoogle Scholar
  24. 24.
    Bunting, J.W., Kanter, J.P., Nelander, R., and Wu, Z., Can. J. Chem., 1995, vol. 73, no. 8, p. 1305.CrossRefGoogle Scholar
  25. 25.
    Pan, Y.-Y., Yang, Y., Long, L.-S., et al., Inorg. Chem. Front., 2014, vol. 1, no. 8, p. 649.CrossRefGoogle Scholar
  26. 26.
    Gonzalez, A., Beltran, A., and Le Bail, A., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1991, vol. 47, no. 8, p. 1624.CrossRefGoogle Scholar
  27. 27.
    Bierke, T., Thesis, Köln: Department für Chemie. Univ. zu Köln, 2012.Google Scholar
  28. 28.
    Zhang, C., Zhang, D., Ma, H., et al., J. Mol. Struct., 2013, vols. 1054−1055, p. 53.CrossRefGoogle Scholar
  29. 29.
    Zhang, C., Chen, Y., Ma, H., et al., New J. Chem., 2013, vol. 37, no. 5, p. 1364.CrossRefGoogle Scholar
  30. 30.
    Brese, N.E. and O’Keeffe, M., Acta Crystallogr., Sect. B: Struct. Sci., 1991, vol. 47, no. 2, p. 192.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Gavrikov
    • 1
    Email author
  • A. B. Ilyukhin
    • 1
  • N. N. Efimov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations