Advertisement

Russian Journal of Coordination Chemistry

, Volume 44, Issue 11, pp 653–659 | Cite as

Replacement of Ligands in a Molecule of Polyhedral Phenylmetallosiloxane Containing Nickel and Sodium Ions

  • Yu. S. Vysochinskaya
  • P. V. Zhemchugov
  • A. A. Anisimov
  • F. M. Dolgushin
  • O. I. Shchegolikhina
  • A. M. Muzafarov
Article
  • 5 Downloads

Abstract

The possibility of the partial or complete substitution of the outer-sphere solvate shell of n-butanol molecules by the nitrogen-containing compounds in the phenylnickelsodiumsiloxane complex. The high-symmetry spatially fixed rigidly cationic layer retains its structure. The obtained complexes Na2(μ-H2O)2(n-BuOH)2{[C6H5SiO2]6Ni4Na43-OH)2[C6H5SiO2]6} · 8(n-BuOH) · 2NH3 (II) and {[C6H5SiO2]6Ni4Na63-OH)2[C6H5SiO2]6} · 4(μ-C3H7NO) · 6(C3H7NO) · 2.8(H2O) · 0.6(C3H7NO) (III) are studied by X-ray diffraction analysis (CIF files CCDC nos. 1810736 (II) and 1810737 (III)).

Keywords:

organometallasiloxanes template synthesis replacement of ligands X-ray diffraction analysis 

Notes

ACKNOWLEDGMENTS

The structures of the synthesized compounds were studied using the equipment of the Center for Molecule Composition Studies of the Nesmeyanov Institute of Organoelement Compounds (Russian Academy of Sciences).

This work was supported by the Russian Science Foundation, project no. 14-23-00231.

REFERENCES

  1. 1.
    Voronkov, M.G., Maletina, E.A., and Roman, V.K., Heterasiloxanes, Soviet Scientific Review Supplement. Ser. Chemistry, London: Academic, 1988. vol. 1.Google Scholar
  2. 2.
    Murugavel, R., Voigt, A., Walawalkar, M.G., et al., Chem. Rev., 1996, vol. 96, p. 2205.CrossRefGoogle Scholar
  3. 3.
    Duchateau, R., Chem. Rev., 2002, vol. 102, p. 3525.CrossRefGoogle Scholar
  4. 4.
    Zechmann, C.A., Boyle, T.J., Rodriguez, M.A., et al., Inorg. Chim. Acta, 2001, vol. 319, p. 137.CrossRefGoogle Scholar
  5. 5.
    Fandos, R., Otero, A., Rodriguez, A., et al., Angew. Chem., 2001, vol. 113, p. 2968.CrossRefGoogle Scholar
  6. 6.
    Nehete, U.N., Chandrasekhar, V., Anantharaman, G., et al., Angew. Chem., 2004, vol. 116, p. 3930.CrossRefGoogle Scholar
  7. 7.
    Lorenz, V., Fischer, A., Giessmann, S., et al., Coord. Chem. Rev., 2000, vols. 206–207, p. 321.CrossRefGoogle Scholar
  8. 8.
    Lucenti, E., Feher, F.J., and Ziller, J.W., Organometallics, 2007, vol. 26, p. 75.CrossRefGoogle Scholar
  9. 9.
    Schmidbaur, H. and Schier, A., Organometallics, 2008, vol. 27, p. 2361.CrossRefGoogle Scholar
  10. 10.
    Do, Y., Simhon, E.D., and Holm, R.H., Inorg. Chem., 1985, vol. 24, p. 1831.CrossRefGoogle Scholar
  11. 11.
    King, L. and Sullivan, A.C., Coord. Chem. Rev., 1999, vol. 189, p. 19.CrossRefGoogle Scholar
  12. 12.
    Li, Y., Wang, J., Wu, Y., et al., Dalton Trans., 2013, vol. 42, p. 13715.CrossRefGoogle Scholar
  13. 13.
    Haoudi-Mazzah, A., Mazzah, A., Schmidt, H.-G., et al., Z. Naturforsch., 1991, vol. 46, p. 587.CrossRefGoogle Scholar
  14. 14.
    Apblett, A.W., Warren, A.C., and Barron, A.R., Chem. Mater., 1992, vol. 4, p. 167.CrossRefGoogle Scholar
  15. 15.
    Gosink, H.-J., Roesky, H.W., Schmidt, H.-G., et al., Organometallics, 1994, vol. 13, p. 3420.CrossRefGoogle Scholar
  16. 16.
    Vaugeois, Y., Jaeger, R.D., Levalois-Mitjaville, J., et al., New J. Chem., 1998, vol. 22, p. 783.CrossRefGoogle Scholar
  17. 17.
    McMahon, C.N., Bott, S.G., Alemany, L.B., et al., Organometallics, 1999, vol. 18, p. 5395.CrossRefGoogle Scholar
  18. 18.
    Veith, M., Schutt, O., Blin, J., et al., Anorg. Allg. Chem., 2002, vol. 628, p. 138.CrossRefGoogle Scholar
  19. 19.
    Mansfeld, D., Mehring, M., and Schurmann, M., Angew. Chem., Int. Ed., 2005, vol. 44, p. 245.CrossRefGoogle Scholar
  20. 20.
    Mehring, M., Paalasmaa, S., and Schurmann, M., Eur. J. Inorg. Chem., 2005, p. 4891.Google Scholar
  21. 21.
    Mehring, M., Coord. Chem. Rev., 2007, vol. 251, p. 974.CrossRefGoogle Scholar
  22. 22.
    Prabhu, S.R., Jami, A.K., and Baskar, V., Organometallics, 2009, vol. 28, p. 3953.CrossRefGoogle Scholar
  23. 23.
    Ali, A., Langer, M., Lorenz, V., et al., J. Organomet. Chem., 2015, vol. 776, p. 163.CrossRefGoogle Scholar
  24. 24.
    Murgavel, R., Bhattacharjee, M., and Roesky, H.W., Appl. Organomet.Chem., 1999, vol. 13, p. 227.CrossRefGoogle Scholar
  25. 25.
    Shchegolikhina, O.I., Zhdanov, A.A., Igonin, V.A., et al., Organomet. Chem. USSR, 1991, vol. 4, p. 39.Google Scholar
  26. 26.
    Igonin, V.A., Lindeman, S.V., Potekhin, K.A., et al., Organomet. Chem. USSR, 1991, vol. 4, p. 383.Google Scholar
  27. 27.
    Igonin, V.A., Lindeman, S.V., Struchkov, Yu.T., et al., Organomet. Chem. USSR, 1991, vol. 4, p. 672.Google Scholar
  28. 28.
    Igonin, V.A., Lindeman, S.V., Stuchkov, Yu.T., et al., Russ. Chem. Bull., 1993, vol. 42, p. 168.CrossRefGoogle Scholar
  29. 29.
    Igonin, V.A., Lindeman, S.V., Struchkov, Yu.T., et al., Russ. Chem. Bull., 1993, vol. 42, p. 176.CrossRefGoogle Scholar
  30. 30.
    Zucchi, C., Shchegolikhina, O.I., Borsari, M., et al., Mol. Catal. A, 1996, vol. 107, p. 313.CrossRefGoogle Scholar
  31. 31.
    Lindeman, S.V., Shchegolikhina, O.I., Molodtsova, Y.A., et al., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1997. vol. 53, p. 305.CrossRefGoogle Scholar
  32. 32.
    Zucchi, C., Mattioli, M., Cornia, A., et al., Inorg. Chim. Acta, 1998, vol. 280, p. 2282.CrossRefGoogle Scholar
  33. 33.
    Zucchi, C., Mattioli, M., Gavioli, G., et al., Eur. J. Inorg. Chem., 2000, p. 1327.Google Scholar
  34. 34.
    Shchegolikhina, O.I., Pozdniakova, Yu.A., Molodtsova, Yu.A., et al., Inorg. Chem., 2002, vol. 41, p. 6892.CrossRefGoogle Scholar
  35. 35.
    Molodtsova, Yu.A., Pozdniakova, Yu.A., Lyssenko, K.A., et al., J. Organomet. Chem., 1998, vol. 571, p. 31.CrossRefGoogle Scholar
  36. 36.
    Pozdniakova, Yu., Shchegolikhina, O., Herrshaft, B., et al., Organometallics, 2000, vol. 19, p. 1077.CrossRefGoogle Scholar
  37. 37.
    Molodtsova, Yu.A., Pozdnyakova, Yu.A., Blagodatskikh, I.V., et al., Russ. Chem. Bull., 2003, vol. 52, no. 12, p. 2722.CrossRefGoogle Scholar
  38. 38.
    Pozdniakova, Yu.A., Lyssenko, K.A., Korlyukov, A.A., et al., Eur. J. Inorg. Chem., 2004, p. 1253.Google Scholar
  39. 39.
    Molodtsova, Yu.A., Lyssenko, K.A., Blagodatskikh, I.V., et al., J. Organomet. Chem., 2008, vol. 693, p. 1797.CrossRefGoogle Scholar
  40. 40.
    Anisimov, A.A., Kononevich, Yu.N., Zhemchugov, P.V., et al., RSC Advances, 2016, vol. 6, no. 26, p. 22052.CrossRefGoogle Scholar
  41. 41.
    Pashchenko, V., Brendel, B., Wolf, B., et al., Eur. J. Inorg. Chem., 2005, p. 4617.Google Scholar
  42. 42.
    Gordon, A.J. and Ford, R.A., The Chemist’s Companion, New York: Wiley, 1972.Google Scholar
  43. 43.
    APEX II Software Package, Madison: Bruker AXS Inc., 2005.Google Scholar
  44. 44.
    Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. S. Vysochinskaya
    • 1
    • 2
  • P. V. Zhemchugov
    • 1
  • A. A. Anisimov
    • 1
  • F. M. Dolgushin
    • 1
  • O. I. Shchegolikhina
    • 1
  • A. M. Muzafarov
    • 1
    • 2
  1. 1.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia
  2. 2.Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of SciencesMoscowRussia

Personalised recommendations