Advertisement

Russian Journal of Coordination Chemistry

, Volume 44, Issue 11, pp 647–652 | Cite as

Chalcogenide Complexes of Cyclopentadienylnickel with Heterocyclic Carbene

  • S. S. Shapovalov
  • A. A. Pasynskii
  • I. V. Skabitskii
  • O. G. Tikhonova
  • A. V. Kolos
  • M. O. Grigor’eva
Article
  • 51 Downloads

Abstract

The monomeric complex (η5-C5H5)Ni(Me2Im)SnPr synthesized by the reaction of the [(η5‑C5H5)Ni(μ-SnPr)]2 dimer with dimethylimidazolium carboxylate is rapidly oxidized in air to form the sulfone complex (η5-C5H5)Ni(Me2Im)S(O)2nPr (I), while its reaction with the adduct W(CO)5(ТHF) affords (η5-C5H5)Ni(Me2Im)(μ-SnPr)W(CO)5 (II). A new heterometallic complex (η5‑C5H5)Ni(Me2Im)TeI2Fc (III) containing the terminal telluroferrocenyl fragment is obtained by the reaction of the known nickel carbene complex (η5-C5H5)Ni(Me2Im)I with FcTeI (Fc = (η5-C5H4)Fe(η5-C5H5)). The complexes synthesized are studied by X-ray structure analysis (CIF files CCDC nos. 1835574, 1835573, and 1835572 for compounds I, II, and III, respectively).

Keywords:

nickel carbene chalcogen N-heterocyclic carbenes X-ray structure analysis 

Notes

ACKNOWLEDGMENTS

This work was carried out on the equipment of the Center for Collective Use of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences).

This work was supported by the Russian Science Foundation, project no. 17-73-10503.

REFERENCES

  1. 1.
    Garrison, J.C. and Youngs, W.J., Chem. Rev., 2005, vol. 105, p. 3978.CrossRefPubMedGoogle Scholar
  2. 2.
    Banach, L., Gunka, P.A., Gorska, D., et al., Eur. J. Inorg. Chem., 2015, vol. 34, p. 5677.CrossRefGoogle Scholar
  3. 3.
    Hahn, F.E., Radloff, C., Pape, T., et al., Organometallics, 2008, vol. 27, p. 6408.CrossRefGoogle Scholar
  4. 4.
    Abernethy, C.D., Cowley, A.H., and Jones, R.A., J. Organomet. Chem., 2000, vol. 596, p. 3.CrossRefGoogle Scholar
  5. 5.
    Malan, F.P., Singleton, E., Van Rooyen, P.H., et al., J. Mol. Struct., 2017, vol. 1147, p. 235.CrossRefGoogle Scholar
  6. 6.
    Voutchkova, A.M., Appelhans, L.N., Chianese, A.R., and Crabtree, R.H., J. Am. Chem. Soc., 2005, vol. 127, p. 17624.CrossRefPubMedGoogle Scholar
  7. 7.
    Nishibayashi, Y., Chiba, T., Singh, J.D., Uemura, S., and Fukuzawa, S.-I., J. Organomet. Chem., 1994, vol. 473, p. 205.CrossRefGoogle Scholar
  8. 8.
    Luca, O.R., Thompson, B.A., Takase, M.K., and Crabtree, R.H., J. Organomet. Chem., 2013, vol. 730, p. 79.CrossRefGoogle Scholar
  9. 9.
    Chambers, G.M., Rauchfuss, T., Arrigoni, F., and Zampella, G., Organometallics, 2016, vol. 35, p. 836.CrossRefGoogle Scholar
  10. 10.
    SADABS (version 2008/1), Madison: Bruker AXS Inc., 2008.Google Scholar
  11. 11.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, p. 112.CrossRefGoogle Scholar
  12. 12.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.CrossRefGoogle Scholar
  13. 13.
    Schenk, W.A., Urban, P., Stahrfeldt, T., et al., Z. Naturforsch., A: Phys. Sci., 1992, vol. 47, p. 1493.Google Scholar
  14. 14.
    Grapperhaus, C.A. and Darensbourg, M.Y., Acc. Chem. Res., 1998, vol. 31, p. 451.CrossRefGoogle Scholar
  15. 15.
    Cordero, B., Gomez, V., Platero-Prats, A.E., et al., Dalton Trans., 2008, vol. 21, p. 2832.CrossRefGoogle Scholar
  16. 16.
    Darkwa, J., Bothata, F., and Koczon, L.M., J. Organomet. Chem., 1993, vol. 455, p. 235.CrossRefGoogle Scholar
  17. 17.
    Moloto, M.J., Nelana, S.M., Moutloali, R.M., et al., J. Organomet. Chem., 2004, vol. 689, p. 387.CrossRefGoogle Scholar
  18. 18.
    Malyshev, D.A., Scott, N.M., Marion, N., et al., Organometallics, 2006, vol. 25, p. 4462.CrossRefGoogle Scholar
  19. 19.
    Torubaev, Y.V., Pasynskii, A.A., Pavlova, A.V., et al., J. Organomet. Chem., 2015, vol. 777, p. 88.CrossRefGoogle Scholar
  20. 20.
    Torubaev, Y.V., Pasynskii, A.A., Galustyan, A.R., et al., Russ. J. Coord. Chem., 2009, vol. 35, p. 1.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. S. Shapovalov
    • 1
  • A. A. Pasynskii
    • 1
  • I. V. Skabitskii
    • 1
  • O. G. Tikhonova
    • 1
  • A. V. Kolos
    • 1
  • M. O. Grigor’eva
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations