Advertisement

Russian Journal of Coordination Chemistry

, Volume 44, Issue 10, pp 642–646 | Cite as

Adsorption of the Monohydrogen Nitrilotris(methylenephosphonato)hydroxylaminatonitrosyl Molybdate Complex on the Steel Surface and Its Thermochemical Behavior in the Isolated State and in Adsorbed Layers

  • F. F. Chausov
  • N. V. Lomova
  • N. Yu. Isupov
  • I. N. Shabanova
  • V. G. Petrov
  • D. K. Zhirov
Article
  • 11 Downloads

Abstract

The adsorption and thermochemical behavior of the heteroleptic molybdenum(III) complex with nitrilotris(methylenephosphonic acid), hydroxylamine, and nitrogen(II) oxide are studied by X-ray photoelectron spectroscopy in situ. The adsorption of the complex on the steel surface is accompanied by the partial oxidation of molybdenum. Upon the thermal action, the free complex is reduced to Mo(II) and that in the adsorbed layer is reduced to metallic molybdenum. This makes it possible to use the complex described as a precursor for surface alloying of steel units.

Keywords:

molybdenum nitrilotris(methylenephosphonate) heteroleptic complex adsorption surface redox reactions X-ray photoelectron spectroscopy 

Notes

REFERENCES

  1. 1.
    Gulyaev, A.P., Metallovedenie (Metal Science), Moscow: Metallurgiya, 1986.Google Scholar
  2. 2.
    Shchukarev, S.A., Neorganicheskaya khimiya (Inorganic Chemistry), Moscow: Vysshaya Shkola, 1974, vol. 2.Google Scholar
  3. 3.
    Irkhin, V.Yu. and Irkhin, Yu.P., Elektronnaya struktura, korrelyatsionnye effekty i fizicheskie svoistva d- i f-perekhodnykh metallov i ikh soedinenii (Electronic Structure, Correlation Effects, and Physical Properties of d and f Transition Metals and Their Compounds), Izhevsk: RKhD, 2008.Google Scholar
  4. 4.
    Totten, G.E., Steel Heat Treatment: Metallurgy and Technologies, Taylor & Francis, 2006.Google Scholar
  5. 5.
    McCleverty, J.A. and Meyer, T.J., Comprehensive Coordination Chemistry II, Elsevier, 2003, vol. 4.Google Scholar
  6. 6.
    Hughes, W.B. and Baldwin, B.A., Inorg. Chem., 1974, vol. 13, p. 1531. doi 10.1021/ic50136a060 Google Scholar
  7. 7.
    Grim, S. and Matienzo, L.J., Inorg. Chem., 1975, vol. 14, p. 1014. doi 10.1021/ic50147a013Google Scholar
  8. 8.
    Chatt, J., Elson, C.M., Leigh, G.J., and Connor, J.A., J. Chem. Soc., Dalton Trans., 1976, p. 1351. doi 10.1039/ DT9760001351Google Scholar
  9. 9.
    Jørgensen, C.K., Coord. Chem. Rev., 1966, vol. 1, p. 164. doi 10.1016/S0010-8545(00)80170-8CrossRefGoogle Scholar
  10. 10.
    Butin, K.P., Beloglazkina, E.K., and Zyk, N.V., Russ. Chem. Rev., 2005, vol. 74, p. 531. doi 10.1070/ RC2005v074n06ABEH000977CrossRefGoogle Scholar
  11. 11.
    Kuznetsov, Yu.I., Organic Inhibitors of Corrosion of Metals, New York: Plenum, 1996.CrossRefGoogle Scholar
  12. 12.
    Kuznetsov, Yu.I., Kazanskaya, G.Yu., and Tsirulnikova, N.V., Protection of Metals and Physical Chemistry of Surfaces, 2003, vol. 39, no. 2, p. 120. doi 10.1023/A:1022986625711CrossRefGoogle Scholar
  13. 13.
    Shabanova, I.N., Chausov, F.F., Naimushina, E.A., and Somov, N.V., Surface and Interface Analisys, 2014, vol. 46, p. 750. doi 10.1002/sia.5479Google Scholar
  14. 14.
    Chausov, F.F., Naimushina, E.A., Shabanova, I.N., and Reshetnikov, S.M., Izv. Akad. Nauk, Ser. Fiz., 2015, vol. 79, no. 6, p. 848. doi 10.7868/ S036767651506006XGoogle Scholar
  15. 15.
    Tananaev, I.V., Tereshin, G.S., Kuznetsova, O.B., et al., Zh. Neorg. Khim., 1981, vol. 26, no. 1, p. 276.Google Scholar
  16. 16.
    Beresnev, E.N., Kuznetsova, O.B., Ketsko, V.A., et al., Russ. J. Inorg. Chem., 2009, vol. 54, no. 9, p. 1396. doi 10.1134/S0036023609090095CrossRefGoogle Scholar
  17. 17.
    Somov, N.V., Chausov, F.F., Zakirova, R.M., et al., Russ. J. Coord. Chem., 2017, vol. 43, no. 12, p. 864. doi 10.1134/S1070328417120090CrossRefGoogle Scholar
  18. 18.
    Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., Data for Biochemical Research, Oxford: Oxford Science Publications, OUP, 1986.Google Scholar
  19. 19.
    Trapeznikov, V.A., Shabanova, I.N., Kholzakov, A.V., and Ponomaryov, A.G., J. Electron Spectrosc. Relat. Phenom., 2004, vols. 137–140, p. 383. doi 10.1016/ j.elspec.2004.02.115CrossRefGoogle Scholar
  20. 20.
    Shirley, D.A., Phys. Rev., 1972, vol. 55, p. 4709. doi 10.1103/PhysRevB.5.4709CrossRefGoogle Scholar
  21. 21.
    Wojdyr, M., J. Appl. Crystallogr., 2010, vol. 43, p. 1126. doi 10.1107/S0021889810030499CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • F. F. Chausov
    • 1
    • 2
  • N. V. Lomova
    • 1
  • N. Yu. Isupov
    • 1
  • I. N. Shabanova
    • 1
  • V. G. Petrov
    • 3
  • D. K. Zhirov
    • 3
  1. 1.Physical and Technical Institute, Ural Branch, Russian Academy of SciencesIzhevskRussia
  2. 2.Udmurt State UniversityIzhevskRussia
  3. 3.Institute of Mechanics, Ural Branch, Russian Academy of SciencesIzhevskRussia

Personalised recommendations