Russian Journal of Coordination Chemistry

, Volume 43, Issue 7, pp 463–472 | Cite as

Synthesis, crystal structure, thermal decomposition, and XPS studies of homo and heterotrinuclear Cu(II)–Cu(II)–Cu(II) and Cu(II)–Ni(II)–Cu(II) complexes obtained from salpn type ligands

  • N. Acar
  • O. Atakol
  • F. N. Dinçer Kaya
  • I. Svoboda
  • M. Yazıcıoğlu
  • S. ÖzEmail author


In this study, a mononuclear CuL complex was prepared by the use of bis-N,N′-(salicylidene)-1, 3-propanediamine (LH2) and Cu2+ ion. NiCl2 and NiBr2 salt were treated with this complex in dioxanewater medium and two new complexes [(CuL)2NiCl2(H2O)2] and [(CuL)2NiBr2(H2O)2)] with Cu(II)–Ni(II)–Cu(II) nucleus structure were obtained. In addition to this bis-N,N′-(2-hydroxybenzyl)-1,3-diaminopropane (LHH2) was prepared by the reduction of LH2 with NaBH4 in MeOH medium. The treatment of this reduced complex with Cu2+ ion resulted a complex [(CuLH)2CuCl2] with a structure of Cu(II)–Cu(II)–Cu(II). The complexes prepared were characterized by the use of elemental analysis, IR spectroscopy, thermogravimetric and X-ray diffraction methods. The crystal structures of [(CuL)2NiBr2(H2O)2] (СIF file CCDC 1448402) and [(CuLH)2CuCl2] (СIF file CCDC 1448401) complexes were elucidated. It was found that halogen ions are coordinated to terminal Cu2+ ions which are in a distorted square pyramid coordination sphere. It was determined that the central Cu(II), which joins terminal square pyramidal Cu(II), was coordinated only by the phenolic oxygens of the ligand while the central Ni(II) was coordinated by two phenolic oxygens of the organic ligand and two water molecules. These complexes were investigated by XPS and it was found that the terminal and central Cu2+ ions were different in Cu(II)–Cu(II)–Cu(II) complex. Also, the thermal degradation of the CuLH complex unit was observed to exothermic in contrast to the expectations.


salpn type Schiff base reduced Schiff base heterotrinuclear complex binding energy XPS study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Butcher, R.J. and Sinn, E., Inorg. Chem., 1976, vol. 15, p. 1604.CrossRefGoogle Scholar
  2. 2.
    Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., et al., J. Chem. Soc., Dalton Trans., 1990, p. 3473.Google Scholar
  3. 3.
    Ghosh, S., Aromi, G., Gamez, P., et al., Eur. J. Inorg. Chem., 2014, p. 3341.Google Scholar
  4. 4.
    Hazari, A. and Ghosh, A., Polyhedron, 2015, vol. 87, p. 403.CrossRefGoogle Scholar
  5. 5.
    Das, K., Datta, A., Roy, S., et al., Polyhedron, 2014, vol. 78, p. 62.CrossRefGoogle Scholar
  6. 6.
    Saha, S., Sasmai, A., Choudhury, C.R., et al., Polyhedron, 2014, vol. 69, p. 262.CrossRefGoogle Scholar
  7. 7.
    Das, L.K., Kadam, R.M., Bauza, A., et al., Inorg. Chem., 2012, vol. 51, p. 12407.CrossRefGoogle Scholar
  8. 8.
    Bandyopadhyay, D., Karmakar, D., Pilet, G., et al., Polyhedron, 2011, vol. 30, p. 2678.CrossRefGoogle Scholar
  9. 9.
    Khalaji, A.D., Amirnasr, M., and Triki, S., Inorg. Chim. Acta, 2009, vol. 362, p. 587.CrossRefGoogle Scholar
  10. 10.
    Mukherjee, P., Biswas, C., Drew, M.G.B., et al., Polyhedron, 2007, vol. 26, p. 3121.CrossRefGoogle Scholar
  11. 11.
    Shi, D.H., You, Z.L., Xu, C., et al., Inorg. Chem. Comm., 2007, vol. 10, p. 404.CrossRefGoogle Scholar
  12. 12.
    Öz S., Kurtaran R., Arıcı C., et al., J. Therm. Anal. Cal., 2010, vol. 99, p. 363.CrossRefGoogle Scholar
  13. 13.
    Reglinski, J., Taylor, M.K., and Kennedy, A.R., Inorg. Chem. Commun., 2006, vol. 9 p, p. 736.CrossRefGoogle Scholar
  14. 14.
    You, Z.L., Zhu, H.L., and Liu, W.S., Z. Anorg. Allg. Chem., 2006, vol. 630, p. 1617.CrossRefGoogle Scholar
  15. 15.
    Durmuș, S., Ergun, Ü., Jaud, J.C., et al., J. Therm. Anal. Cal., 2006, vol. 86, p. 337.CrossRefGoogle Scholar
  16. 16.
    Ercan, F., Atakol, O., Svoboda, I., et al., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2002, vol. 58, p. m193.CrossRefGoogle Scholar
  17. 17.
    Uhlenbrock, S., Wegner, R., and Krebs, B., J. Chem. Soc., Dalton Trans., 1996, p. 3731.Google Scholar
  18. 18.
    Gerli, A., Hagen, S., and Marzilli, L.G., Inorg. Chem., 1991, vol. 30, p. 4673.CrossRefGoogle Scholar
  19. 19.
    Drew, M.G.B., Prasad, R.N., and Sharma, R.P., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1985, vol. 41, p. 1755.CrossRefGoogle Scholar
  20. 20.
    Aneetha, H., Pannerselvam, K., Liao, T.F., et al., J. Chem. Soc., Dalton Trans., 1999, p. 2689.Google Scholar
  21. 21.
    Mustapha, A., Busch, C., Reglinski, J., et al., Polyhedron, 2011, vol. 30, p. 1530.CrossRefGoogle Scholar
  22. 22.
    Mustapha, A., Reglinski, J., and Kennedy, A.R., Inorg. Chem. Comm., 2014, vol. 13, p. 464.CrossRefGoogle Scholar
  23. 23.
    Taylor, M.K., Reglinski, J., and Kennedy, A.R., Polyhedron, 2004, vol. 23, p. 320.CrossRefGoogle Scholar
  24. 24.
    Ray, A., Dutta, D., Mondal, P.C., et al., Polyhedron, 2007, vol. 26, p. 1012.CrossRefGoogle Scholar
  25. 25.
    Biswas, S., Diaz, C., and Ghosh, A., Polyhedron, 2013, vol. 51, p. 96.CrossRefGoogle Scholar
  26. 26.
    Song, Y., Gamez, P., Roubeau, O., et al., Inorg. Chim. Acta, 2005, vol. 358, p. 109.CrossRefGoogle Scholar
  27. 27.
    Vafazadeh, R., Khaledi, B., Willis, A.C., et al., Polyhedron, 2011, vol. 30, p. 1815.CrossRefGoogle Scholar
  28. 28.
    Akay, A., Arici, C., Atakol, O., et al., J. Coord. Chem., 2006, vol. 59, p. 933.CrossRefGoogle Scholar
  29. 29.
    Oxford Diffraction, CrysAlis CCD and CrysAlis RED. Version 1.170.14, Oxfordshire: Oxford Diffraction, 2002.Google Scholar
  30. 30.
    Sheldrick, G.M., SHELXS97 and SHEXL97. Program for Crystal Structure Solution and Refinement, Göttingen: Univ. of Göttingen, 1997.Google Scholar
  31. 31.
    Farrugia, L.J., J. Appl. Crystallogr., 1999, vol. 32, p. 837.CrossRefGoogle Scholar
  32. 32.
    Öz, S., Ergun, Ü., Yakut, M., et al., Russ. J. Coord. Chem., 2014, vol. 40, p. 571.CrossRefGoogle Scholar
  33. 33.
    Biswas, A., Drew, M.G.B., Ribas, J., et al., Inorg. Chim. Acta, 2011, vol. 379, p. 28.CrossRefGoogle Scholar
  34. 34.
    Aksu, M. and Durmus, S., Sarı, M., et al., J. Therm. Anal. Calorim., 2007, vol. 90, p. 541.CrossRefGoogle Scholar
  35. 35.
    Ates, B.M., Ercan, F., Aksu, M.L., et al., Z. Kristallogr., 2008, vol. 223, p. 530.Google Scholar
  36. 36.
    Spek, A.L. Acta Cryst., Sect. D: Biol. Crystallogr., 2009, vol. 65, p. 148.CrossRefGoogle Scholar
  37. 37.
    Addison, W.A., Rao, T.N., Reedijk, J., et al., J. Chem. Soc., Dalton Trans., 1984, p. 1349.Google Scholar
  38. 38.
    NIST Chemistry Web Book, Nist Standart Database Number 20, Version 4.1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. Acar
    • 1
  • O. Atakol
    • 1
  • F. N. Dinçer Kaya
    • 2
  • I. Svoboda
    • 3
  • M. Yazıcıoğlu
    • 1
  • S. Öz
    • 4
    Email author
  1. 1.Ankara University, Faculty of Science, Department of ChemistryAnkaraTurkey
  2. 2.Mersin University, Faculty of Pharmacy Department of Analytical Chemistry, Yenisehir CampusMersinTurkey
  3. 3.Strukturforschung, FB MaterialwissenschaftTU-DarmstadtD-12 DarmstadtGermany
  4. 4.Ahi Evran University, Faculty of Science and Arts, Department of ChemistryKırşehirTurkey

Personalised recommendations