Advertisement

Russian Journal of Coordination Chemistry

, Volume 41, Issue 10, pp 644–653 | Cite as

Chemisorption binding of gold(III) from solutions with bismuth dipropyldithiocarbamate: Supramolecular self-assembly (role of the secondary Au…S and aurophilic interactions) and thermal behavior of the solvated heteropolynuclear ionic type complex ([Au{S2CN(C3H7)2}2]3[Bi2Cl9] • 0.5CO(CH3)2 • 0.5HCl) n

  • A. S. Zaeva
  • A. V. Ivanov
  • A. V. Gerasimenko
Article

Abstract

The reaction of binuclear bismuth(III) N,N-dipropyldithiocarbamate [Bi2{S2CN(C3H7)2}6] with a solution of AuCl3 in 2 M HCl was studied. Crystallization of the heterogeneous reaction products from an acetone solution afforded the polymeric solvated heteropolynuclear gold(III)–bismuth complex, ([Au{S2CN(C3H7)2}2]3[Bi2Cl9] · 1/2CO(CH3)2 · 1/2HCl)n (I). According to X-ray diffraction data (CIF file CCDC no. 1050766), the structure of I comprises four isomeric [Au{S2CN(C3H7)2}2]+ cations in 1: 1: 2: 2 ratio, namely: cation “A” with the Au(1) atom, cation “B” with the Au(2) atom, cation “C” with the Au(3) atom, and cation “D” with the Au(4) atom, and the discrete binuclear [Bi2Cl9]3– anions. The isomeric gold(III) complex cations are involved in the construction of two types of cationic triads, [“C”···“A”···“C”] and [“D”···“B”···“D”], through secondary bonds and short Au···S contacts. The cation types differ by both the nature of binding and the Au–Au distances. The weak aurophilic binding between the cationic triads (Au···Au 3.5416(2) Å) gives rise to zigzag-like polymeric chains (···[“C”···“A”···“C”]···[“D”···“B”···“D”]···)n extended along the y axis. In turn, the [Bi2Cl9]3– anions located on one side of polymer chains are held by the secondary Cl···S bonds. The outer-sphere CO(CH3)2 and HCl solvate molecules joined by hydrogen bonds are located in the space between bismuth anions. The thermal behavior of I was studied by simultaneous thermal analysis. The thermal destruction of the complex includes desolvation and thermolysis of the dithiocarbamate moiety and [Bi2Cl9]3– with liberation of gold metal and bismuth chloride (which is subsequently evaporated) and partial formation of Bi2S3. In the temperature range of 712–828°C, bismuth sulfide is oxidized to (BiO)2SO4, which decomposes above 828°C to give Bi2O3. Bismuth(III) oxide and reduced gold are the final products of thermal transformations.

Keywords

Bismuth Coordination Chemistry Differential Scanning Calorimetry Curve Thermolysis Dithiocarbamate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, L.-M., Wu, X.-T., and Chen, L., Coord. Chem. Rev., 2009, vol. 253, nos 23–24, p. 2787.CrossRefGoogle Scholar
  2. 2.
    Louvain, N., Mercier, N., and Boucher, F., Inorg. Chem., 2009, vol. 48, no. 3, p. 879.CrossRefGoogle Scholar
  3. 3.
    Hrizi, C., Samet, A., Abid, Y., et al., J. Mol. Struct., 2011, vol. 992, nos 1–3, p. 96.CrossRefGoogle Scholar
  4. 4.
    Jakubas, R., Piecha, A., Pietraszko, A., and Bator, G., Phys. Rev., 2005, vol. B72, no. 10, p. 104107.CrossRefGoogle Scholar
  5. 5.
    Piecha, A., Biao'ska, A., and Jakubas, R., J. Phys.: Condens. Matter, 2008, vol. 20, no. 32, comm. 325224.Google Scholar
  6. 6.
    Bi, W., Leblanc, N., Mercier, N., et al., Chem. Mater., 2009, vol. 21, no. 18, p. 4099.CrossRefGoogle Scholar
  7. 7.
    Zhu, X.H., Mercier, N., Frere, P., et al., Inorg. Chem., 2003, vol. 42, no. 17, p. 5330.CrossRefGoogle Scholar
  8. 8.
    Li, H., Lai, C.S., Wu, J., et al., J. Inorg. Biochem., 2007, vol. 101, no. 5, p. 809.CrossRefGoogle Scholar
  9. 9.
    Ishak, D.H.A., Ooi, K.K., Ang, K.-P., et al., J. Inorg. Biochem., 2014, vol. 130, p. 38.CrossRefGoogle Scholar
  10. 10.
    Ozturk, I.I., Banti, C.N., Kourkoumelis, N., et al., Polyhedron, 2014, vol. 67, p. 89.CrossRefGoogle Scholar
  11. 11.
    Jamaluddin, N.A., Baba, I., and Ibrahim, N., Malays. J. Anal. Sci, 2014, vol. 18, no. 2, p. 251.Google Scholar
  12. 12.
    Nomura, R., Kanaya, K., and Matsuda, H., Bull. Chem. Soc. Jpn., 1989, vol. 62, no. 3, p. 939.CrossRefGoogle Scholar
  13. 13.
    Marino, G., Chierice, G.O., Pinheiro, C.D., and Souza, A.G., Thermochim. Acta, 1999, vol. 328, nos. 1–2, p. 209.CrossRefGoogle Scholar
  14. 14.
    Monteiro, O.C., Nogueira, H.I.S., Trindade, T., and Motevalli, M., Chem. Mater., 2001, vol. 13, no. 6, p. 2103.CrossRefGoogle Scholar
  15. 15.
    Zhang, H., Huang, J., Zhou, X., and Zhong, X., Inorg. Chem., 2011, vol. 50, no. 16, p. 7729.CrossRefGoogle Scholar
  16. 16.
    Cabrita, J.F., Ferreira, V.C., and Monteiro, O.C., Electrochim. Acta, 2014, vol. 135, p. 121.CrossRefGoogle Scholar
  17. 17.
    Sivasekar, S., Ramalingam, K., Rizzoli, C., and Alexander, N., Inorg. Chim. Acta, 2014, vol. 419, p. 82.CrossRefGoogle Scholar
  18. 18.
    Rodina, T.A., Ivanov, A.V., Gerasimenko, A.V., et al., Polyhedron, 2012, vol. 40, no. 1, p. 53.CrossRefGoogle Scholar
  19. 19.
    Rodina, T.A., Ivanov, A.V., and Gerasimenko, A.V., Russ. J. Coord. Chem., 2014, vol. 40, no. 2, p. 100.CrossRefGoogle Scholar
  20. 20.
    Ivanov, A.V., Rodina, T.A., and Loseva, O.V., Russ. J. Coord. Chem., 2014, vol. 40, no. 12, p. 875.CrossRefGoogle Scholar
  21. 21.
    Ivanov, A.V., Loseva, O.V., Rodina, T.A., et al., Russ. J. Inorg. Chem., 2014, vol. 59, no. 8, p. 807.CrossRefGoogle Scholar
  22. 22.
    Loseva, O.V. and Ivanov, A.V., Russ. J. Inorg. Chem., 2014, vol. 59, no. 12, p. 1491.CrossRefGoogle Scholar
  23. 23.
    Loseva, O.V., Rodina, T.A., Smolentsev, A.I., and Ivanov, A.V., J. Struct. Chem. 2014, vol. 55, no. 5, p. 901.CrossRefGoogle Scholar
  24. 24.
    Zaeva, A.S., Ivanov, A.V., Gerasimenko, A.V., and Sergienko, V.I., Russ. J. Inorg. Chem., 2015, vol. 60, no. 2, p. 203.CrossRefGoogle Scholar
  25. 25.
    Ivanov, A.V., Bredyuk, O.A., Loseva, O.V., and Rodina, T.A., Russ. J. Coord. Chem., 2015, vol. 41, no. 2, p. 108.CrossRefGoogle Scholar
  26. 26.
    Ronconi, L., Giovagnini, L., Marzano, C., et al., Inorg. Chem., 2005, vol. 44, no. 6, p. 1867.CrossRefGoogle Scholar
  27. 27.
    Boscutti, G., Feltrin, L., Lorenzon, D., et al., Inorg. Chim. Acta, 2012, vol. 393, p. 304.CrossRefGoogle Scholar
  28. 28.
    Keter, F.K., Guzei, I.A., Nell, M., et al., Inorg. Chem., 2014, vol. 53, no. 4, p. 2058.CrossRefGoogle Scholar
  29. 29.
    Shi, Y., Chu, W., Wang, Y., et al., Inorg. Chem. Commun., 2013, vol. 30, p. 178.CrossRefGoogle Scholar
  30. 30.
    Byr’ko, V.M., Ditiokarbamaty (Dithiocarbamates), Moscow: Nauka, 1984.Google Scholar
  31. 31.
    APEX2, Madison (WI): Bruker AXS, 2010.Google Scholar
  32. 32.
    SAINT, Madison (WI): Bruker AXS, 2010.Google Scholar
  33. 33.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.CrossRefGoogle Scholar
  34. 34.
    Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441.CrossRefGoogle Scholar
  35. 35.
    Bondi, A., J. Phys. Chem., 1966, vol. 70, no. 9, p. 3006.CrossRefGoogle Scholar
  36. 36.
    Jaschinski, B., Blachnik, R., Pawlak, R., and Reuter, H., J. Kristallogr. NCS, 1998, vol. 213, nos. 1–4, p. 541.Google Scholar
  37. 37.
    Savilov, S., Kloo, L., Kuznetsov, A., et al., Z. Anorg. Allg. Chem., 2003, vol. 629, no. 14, p. 2525.CrossRefGoogle Scholar
  38. 38.
    Gerasimenko, A.V., Karaseva, E.T., and Polishchuk, A.V., Acta Crystallogr., Sect E: Structure Reports Online, 2008, vol. 64, no. 2, p. m378.CrossRefGoogle Scholar
  39. 39.
    Alcock, N.W., Adv. Inorg. Chem. Radiochem., 1972, vol. 15, no. 1, p. 1.Google Scholar
  40. 40.
    Uson, R., Laguna, A., Laguna, M., et al., Chem. Commun., 1988, no. 11, p. 740.CrossRefGoogle Scholar
  41. 41.
    Pathaneni, S.S. and Desiraju, G.R., J. Chem. Soc., Dalton Trans., 1993, no. 2, p. 319.CrossRefGoogle Scholar
  42. 42.
    Schmidbaur, H., Gold Bull., 2000, vol. 33, no. 1, p. 3.CrossRefGoogle Scholar
  43. 43.
    Haiduc, I. and Edelmann, F.T., Supramolecular Organometallic Chemistry, Cambridge: Wiley, 1999.CrossRefGoogle Scholar
  44. 44.
    Razuvaev, G.A., Almazov, G.V., Domrachev, G.A., et al., Dokl. Akad. Nauk SSSR, 1987, vol. 294, no. 1, p. 141.Google Scholar
  45. 45.
    Lidin, R.A., Andreeva, L.L., and Molochko, V.A., Spravochnik po neorganicheskoi khimii (Handbook in Inorganic Chemistry), Moscow: Khimiya, 1987.Google Scholar
  46. 46.
    Larionov, S.V., Mikhalin, I.N., Glinskaya, L.A., et al., Russ. J Inorg. Chem., 2004, vol. 49, no. 3, p. 331.Google Scholar
  47. 47.
    Ptaszynski, B., Skiba, E., and Krystek, J., J. Therm. Anal. Calorim., 2001, vol. 65, no. 1, p. 231.CrossRefGoogle Scholar
  48. 48.
    Ripan, R. and Ceteanu, I., Chimia Metalelor, Bucuresti: Editura Didactica si Pedagogica, 1968, vol. 1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. S. Zaeva
    • 1
  • A. V. Ivanov
    • 1
  • A. V. Gerasimenko
    • 2
  1. 1.Institute of Geology and Nature Management, Far East BranchRussian Academy of SciencesBlagoveschenskRussia
  2. 2.Institute of Chemistry, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations