Russian Journal of Coordination Chemistry

, Volume 39, Issue 12, pp 849–856 | Cite as

Polymeric copper(II) complexes with 4-formyl-3-methyl-1-phenylpyrazol-5-one hetarylhydrazones: Synthesis and crystal structures

  • L. D. Popov
  • S. I. LevchenkovEmail author
  • I. N. Shcherbakov
  • V. V. Minin
  • G. G. Aleksandrov
  • E. A. Ugolkova
  • V. V. Lukov
  • V. A. Kogan


4-Formyl-3-methyl-1-phenylpyrazol-5-one quinolin-2-yl-(H2L1) and benzothiazol-2-ylhydrazones (H2L2) were synthesized and studied. Quantum-chemical modeling of possible tautomers of the hydrazones was performed. Copper(II) complexes of the general formula [Cu(HL)(ROH)]Y (R = CH3, C2H5; Y=NO3, ClO4) were obtained and examined by IR and EPR spectroscopy, magnetochemistry, and X-ray diffraction. Additional coordination through the N atom of the pyrazole ring enables the complex molecules to form zigzag polymer chains linked by intermolecular hydrogen bonds.


Pyrazole Ring Pyrazolone Spin Hamiltonian Parameter Mononuclear Species Polymeric Copper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garnovskii, A.D., Nivorozhkin, A.L., and Minkin, V.A., Coord. Chem. Rev., 1993, vol. 126, nos. 1–2, p. 1.CrossRefGoogle Scholar
  2. 2.
    Marchetti, F., Pettinari, C., and Pettinari, R., Coord. Chem. Rev., 2005, vol. 249, no. 24, p. 2909.CrossRefGoogle Scholar
  3. 3.
    Casas, J.S., Garsia-Tasende, M.S., Sanchez, A., et al., Coord. Chem. Rev., 2007, vol. 251, nos. 11–12, p. 1561.CrossRefGoogle Scholar
  4. 4.
    Kurdekar, G.S., Sathisha, M.P., Budagumpi, S., et al., Med. Chem. Res., 2012, vol. 21, no. 9, p. 2273.CrossRefGoogle Scholar
  5. 5.
    Garnovskii, A.D. and Vasil’chenko, I.S., Usp. Khim., 2005, vol. 74, no. 3, p. 211.CrossRefGoogle Scholar
  6. 6.
    Minkin, V.I., Garnovskii, A.D., Elguero, J., et al., Adv. Heterocycl. Chem., 2000, vol. 76, p. 157.CrossRefGoogle Scholar
  7. 7.
    Movchan, A.I., Kurbangalieva, A.R., Kataeva, O.N., et al., Russ. J. Gen. Chem., 2003, vol. 73, no. 7, p. 1130.CrossRefGoogle Scholar
  8. 8.
    Zhang, L., Liu, L., Jia, D., et al., Inorg. Chem. Commun., 2004, vol. 7, no. 12, p. 1306.CrossRefGoogle Scholar
  9. 9.
    Lu, J., Zhang, L., Liu, L., et al., Spectrochim. Acta, Part A, 2008, vol. 71, no. 3, p. 10361.Google Scholar
  10. 10.
    Shul’gin, V.F., Obukh, A.I., Rusanov, E.B., et al., Russ. J. Inorg. Chem., 2009, vol. 54, no. 8, p. 1223.CrossRefGoogle Scholar
  11. 11.
    Modi, C.K., Jani, D.H., Patel, H.S., and Pandya, H.M., Spectrochim. Acta, Part A, 2010, vol. 75, no. 4, p. 1321.CrossRefGoogle Scholar
  12. 12.
    Yadav, R.J., Vyas, K.M., and Jadeja, R.N., J. Coord. Chem., 2010, vol. 63, no. 10, p. 1820.CrossRefGoogle Scholar
  13. 13.
    SMART and SAINT. Release 5.0. Area Detector Control and Integration Software, Madison (WI, USA): Bruker AXS, Analytical X-ray Instruments, 1998.Google Scholar
  14. 14.
    Sheldrick, G.M., SADABS. A Program for Exploiting the Redundancy of Area-Detector X-ray Data, Göttingen (Germany): Univ. of Göttingen, 1999Google Scholar
  15. 15.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.CrossRefGoogle Scholar
  16. 16.
    Spek, A.L., J. Appl. Crystallogr., 2003, vol. 36, no. 1, p. 7.CrossRefGoogle Scholar
  17. 17.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.CrossRefGoogle Scholar
  18. 18.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, no. 2, p. 785.CrossRefGoogle Scholar
  19. 19.
    Stratmann, R.E., Scuseria, G.E., and Frisch, M.J., J. Chem. Phys., 1998, vol. 109, no. 19, p. 8218.CrossRefGoogle Scholar
  20. 20.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian’03. Revision D.01, Wallingford (CT, USA): Gaussian, Inc., 2004.Google Scholar
  21. 21.
    Zhurko, G.A. and Zhurko, D.A.,
  22. 22.
    Rakitin, Yu.V., Larin, G.M., and Minin, V.V., Interpretatsiya spektrov EPR koordinatsionnykh soedinenii (Interpretation of EPR Spectra of Coordinatin Compounds), Moscow: Nauka, 1993.Google Scholar
  23. 23.
    Lebedev, Ya.S. and Muromtsev, V.I., EPR i relaksatsiya stabilizirovannykh radikalov (EPR and Relaxation of Stabilized Radicals), Moscow: Khimiya, 1972.Google Scholar
  24. 24.
    Wilson, R. and Kivelson, D.J., Chem. Phys., 1966, vol. 44, no. 1, p. 154.Google Scholar
  25. 25.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Inorg. Chem. Commun., 2012, vol. 17, p. 1.CrossRefGoogle Scholar
  26. 26.
    Shul’gin, V.F., Trush, Yu.V., Rusanov, E.B., et al., Russ. J. Inorg. Chem., 2010, vol. 55, no. 5, p. 757.CrossRefGoogle Scholar
  27. 27.
    Shul’gin, V.F., Trush, Yu.V., Konnik, O.V., et al., Russ. J. Inorg. Chem., 2012, vol. 57, no. 2, p. 226.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • L. D. Popov
    • 1
  • S. I. Levchenkov
    • 2
    Email author
  • I. N. Shcherbakov
    • 1
  • V. V. Minin
    • 3
  • G. G. Aleksandrov
    • 3
  • E. A. Ugolkova
    • 3
  • V. V. Lukov
    • 1
  • V. A. Kogan
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  3. 3.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations