Russian Journal of Coordination Chemistry

, Volume 39, Issue 9, pp 685–688 | Cite as

Coordination of ions in aqueous solutions of erbium chloride from X-ray diffraction data



Aqueous solutions of erbium chloride were studied by X-ray diffraction over a broad range of concentrations under standard conditions. The prepeaks observed in the experimental scattering intensity curves were interpreted. The solutions were found to possess two types of structures. Saturated and concentrated solutions down to molar ratio of 1 : 20 have a quasi-crystalline structure defined by inter-ion interactions. Dilute solutions form a water-like structure characterized by a tetrahedral network of hydrogen bonds between water molecules. It was found that prepeaks can also be seen in the intensity curves of dilute solutions, which implies that these solutions retain the so-called long-range order.


Coordination Sphere Erbium Radial Distribution Function Intensity Curve Radial Distribution Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Palincas, G. and Kalman, E., Z. Naturforsch., A: Phys. Sci., 1981, vol. 36, no. 12, p. 1367.Google Scholar
  2. 2.
    Alves-Marques, M., Cabaço, M.I., de Barros Marques, M.I., et al., J. Phys. Condens. Matter, 2001, vol. 13, no. 20, p. 4367.CrossRefGoogle Scholar
  3. 3.
    Grechin, O.V., Smirnov, P.R., and Trostin, V.N., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 54, no. 6, p. 42.Google Scholar
  4. 4.
    Habenschuss, H. and Spedding, F.H., J. Chem. Phys., 1979, vol. 70, no. 6, p. 2797.CrossRefGoogle Scholar
  5. 5.
    Johansson, G. and Wakita, H., Inorg. Chem., 1985, vol. 24, no. 19, p. 3047.CrossRefGoogle Scholar
  6. 6.
    Johansson, G., Niinisto, L., and Wakita, H., Acta Chem. Scand. A, 1985, vol. 39, no. 5, p. 359.CrossRefGoogle Scholar
  7. 7.
    Johansson, G. and Yokoyama, H., Inorg. Chem., 1990, vol. 29, no. 13, p. 2460.CrossRefGoogle Scholar
  8. 8.
    Yokoyama, H. and Johansson, G., Acta Chem. Scand., 1990, vol. 44, p. 567.CrossRefGoogle Scholar
  9. 9.
    Yamaguchi, T., Nomura, M., Wakita, H., and Ohtaki, H., J. Chem. Phys., 1988, vol. 89, no. 8, p. 5153.CrossRefGoogle Scholar
  10. 10.
    Ishiguro, S.-I., Umebayashi, Y., Kato, K., et al., J. Chem. Soc., Faraday Trans., 1998, vol. 94, no. 24, p. 3607.CrossRefGoogle Scholar
  11. 11.
    Persson, I., D’Angelo, P., de Panfilis, S., et al., Chem. Eur. J., 2008, vol. 14, no. 10, p. 3056.CrossRefGoogle Scholar
  12. 12.
    Duvail, M., Vitorge, P., and Spezia, R., J. Chem. Phys., 2009, vol. 130, no. 10, p. 104501.CrossRefGoogle Scholar
  13. 13.
    Duvail, M., Spezia, R., and Vitorge, P., Chem. Phys. Chem., 2008, vol. 9, no. 5, p. 693.CrossRefGoogle Scholar
  14. 14.
    Beuchat, C., Hagberg, D., Spezia, R., and Gagliardi, L., J. Phys. Chem. B, 2010, vol. 114, no. 47, p. 15590.CrossRefGoogle Scholar
  15. 15.
    Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2012, vol. 82, no. 3, p. 360.CrossRefGoogle Scholar
  16. 16.
    Dang, L.X., Schenter, G.K., Glezakou, V.A., and Fulton, J.L., J. Phys. Chem. B, 2006, vol. 110, no. 47, p. 23644.CrossRefGoogle Scholar
  17. 17.
    Soper, A.K. and Weckström, K., Biophys. Chem., 2006, vol. 124, no. 3, p. 180.CrossRefGoogle Scholar
  18. 18.
    Tongraar, A., T-Thienprasert, J., Rujirawat, S., and Limpijumnong, S., Phys. Chem. Chem. Phys., 2010, vol. 12, no. 36, p. 10876.CrossRefGoogle Scholar
  19. 19.
    Johansson, G. and Sandsrom, M., Chem. Scr., 1973, vol. 4, no. 5, p. 195.Google Scholar
  20. 20.
    Dorosh, A.K. and Skryshevskii, A.F., Zh. Strukt. Khim., 1967, vol. 8, no. 2, p. 348.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  2. 2.Ivanovo State University of Chemistry and TechnologyIvanovoRussia

Personalised recommendations