Advertisement

A novel copper(II) complex with schiff base derived from o-vanillin and L-methionine: Syntheses and crystal structures

  • Q. Wang
  • C. F. Bi
  • Y. H. Fan
  • X. Zhang
  • J. Zuo
  • S. B. Liu
Article

Abstract

A new Schiff base copper(II) complex, {[CuL(H2O)2][CuL(H2O)]3 · 4H2O · C3H7NO} n (H2L = (Z)-2-(2-hydroxy-3-methoxybenzylideneamino)-4-(methylthio)butanoic acid), was synthesized and characterized by IR, UV, and X-ray diffraction single-crystal analysis. The crystal belongs to the triclinic crystal system, space group with cell parameters a = 5.2027(5) Å, b = 16.6916(16) Å, c = 20.237(2) Å, α = 88.895(10)°, β = 84.127(1)°, γ = 83.577(10)°, V = 1737.2(3) Å3, Z = 1, F(000) = 848, S = 1.042, ρcalcd = 1.561 g cm−3, μ = 1.411 mm−1, the final R 1 = 0.0760 and wR 2 = 0.2318 for 6030 observed reflections (I > 2σ(I)). The crystal structure of the complex contains two independent units with different coordination environments. In independent unit 1, the Cu(1) is five-coordinated by one nitrogen atom and two oxygen atoms from the Schiff base ligand and two oxygen atoms from two water molecules to form a distorted square pyramid geometry. On the other hand, in independent unit 2, the Cu(2) is five-coordinated and possesses a slightly distorted square-pyramidal coordination geometry, defined by one nitrogen atom, one hydroxyl oxygen atom, two carboxylate oxygen atoms in two different ligands, and one oxygen atom of the water molecule. The complex forms a one-dimensional chain polymer in the xy plane through carboxyl oxygen atoms in the Schiff base ligands.

Keywords

Schiff Base Coordination Chemistry Schiff Base Ligand Methylthio Independent Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shi, Q., Xu, L., Ji, J., et al., Inorg. Chem. Commun., 2004, vol. 7, p. 1254.CrossRefGoogle Scholar
  2. 2.
    You, Z.L., Zhu, H.L., Liu, W.S., et al., Z. Anorg. Allg. Chem., 2004, vol. 630, p. 1617.CrossRefGoogle Scholar
  3. 3.
    Golcu, A., Tumer, M., Demirelli, H., et al., Inorg. Chim. Acta, 2005, vol. 358, p. 1785.CrossRefGoogle Scholar
  4. 4.
    Ziessel, R., Coord. Chem. Rev., 2001, vol. 195, p. 216.Google Scholar
  5. 5.
    Choudhury, C.R., Dey, S.K., Mondal, N., et al., J. Chem. Crystallogr., 2002, vol. 31, p. 57.CrossRefGoogle Scholar
  6. 6.
    West, D.X., Gebremedhin, H., Butcher, R.J., et al., Polyhedron, 1993, vol. 12, p. 2489.CrossRefGoogle Scholar
  7. 7.
    Chandra, S. and Sangeetika, X., Spectrochim. Acta, A, 2004, vol. 60, p. 147.CrossRefGoogle Scholar
  8. 8.
    Kimura, E., Wada, S., Shiyonoya, M., et al., Inorg. Chem., 1994, vol. 96, p. 770.CrossRefGoogle Scholar
  9. 9.
    Lambert, S.L., Spiro, C., Gagne, R.R., et al., Inorg. Chem., 1982, vol. 21, p. 68.CrossRefGoogle Scholar
  10. 10.
    Teicher, B.A., Abrams, M.J., and Rosbe, K.W., Cancer Res., 1990, vol. 50, p. 6971.Google Scholar
  11. 11.
    Srinivasn, K., Shankaranarayanan, K., Thangavelu, S., et al., Cryst. Growth, 2000, vol. 212, p. 246.CrossRefGoogle Scholar
  12. 12.
    Rao, R.V., Rao, C.P., and Wegelius, E.K., J. Chem. Crystallogr., 2003, vol. 33, p. 139.CrossRefGoogle Scholar
  13. 13.
    Qiao, Y.H., Yue, M., Sun, M., et al., Chin. J. Appl. Chem., 2003, vol. 20, p.192.Google Scholar
  14. 14.
    Ye, G.R., Chai, Y.Q., Ruo, R.Y., et al., Anal. Sci., 2007, vol. 23, p. 171.CrossRefGoogle Scholar
  15. 15.
    Fan, Y.H., Bi, S.Y. Li, Y.Y., et al., Rus. J. Coord. Chem., 2008, vol. 33, p. 772.CrossRefGoogle Scholar
  16. 16.
    Lumme, P. and Elo, H., Inorg. Chim. Acta, 1984, vol. 94, p. 241.CrossRefGoogle Scholar
  17. 17.
    Antony, F.M., Mahony, R.S., and Joyce, M.W., Croat. Chem. Acta, 1999, vol. 72, p. 685.Google Scholar
  18. 18.
    Xiao, Y., Bi, C.F., Fan, Y.H., et al., Int. J. Oncol., 2008, vol. 33, p. 1073.Google Scholar
  19. 19.
    Sheldrick, G.M., SHELXTL-97, Program for Crystal Structure Refinement, Göttingen (Germany): Univ. of Göttingen, 1997.Google Scholar
  20. 20.
    Addison, A.W., Rao, T.N., Reedijk, J., et al., Dalton Trans., 1984, p. 1349.Google Scholar
  21. 21.
    Lewis, D.L., McGregor, K.T., Hatfield, W.E., et al., Inorg. Chem., 1974, vol. 13, p. 1013.CrossRefGoogle Scholar
  22. 22.
    Mandal, S.K., Thompson, L.K., Newlands M.J., et al., Inorg. Chem., 1990, vol. 29, p. 1324.CrossRefGoogle Scholar
  23. 23.
    Sangeetha, N.R., Baradi, K., Gupta, R., et al., Polyhedron, 1999, vol. 18, p. 1425.CrossRefGoogle Scholar
  24. 24.
    Bi, C.F. and Fan, Y.H., Synth. React. Inorg. Met.-Org. Chem., 2004, vol. 34, p. 687.CrossRefGoogle Scholar
  25. 25.
    Kasumov, V.T., Ibrahim, U., and Ahmed, B., J. Fluorine Chem., 2010, vol. 131, p. 59.CrossRefGoogle Scholar
  26. 26.
    Bernadette, S.C., Michael, D., Agnieszka, F., et al., Polyhedron, 2010, vol. 29, p. 813.CrossRefGoogle Scholar
  27. 27.
    Manimaran, A., Prabhakaran, R., Deepa, T., et al., Appl. Organomet. Chem., 2008, vol. 22, p. 353.CrossRefGoogle Scholar
  28. 28.
    Arslan, F., Odabasoglu, M., Oelmez, H., and Büyükgüngör, O., Polyhedron, 2009, vol. 28, p. 2943.CrossRefGoogle Scholar
  29. 29.
    Wang, Y.F., Liu, J.F., Xian, H.D., et al., Molecules, 2009, vol. 14, p. 2582.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • Q. Wang
    • 1
  • C. F. Bi
    • 1
  • Y. H. Fan
    • 1
  • X. Zhang
    • 1
  • J. Zuo
    • 1
  • S. B. Liu
    • 1
  1. 1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao, ShandongP.R. China

Personalised recommendations