Advertisement

Russian Journal of Coordination Chemistry

, Volume 36, Issue 9, pp 644–650 | Cite as

Electrochemical transformations of catecholate and o-amidophenolate complexes with triphenylantimony(V)

  • I. V. Smolyaninov
  • A. I. Poddel’skiy
  • N. T. Berberova
  • V. K. Cherkasov
  • G. A. Abakumov
Article

Abstract

The electrochemical properties of catecholate and o-amidophenolate complexes with triphenylantimony(V) with various substituents in the aromatic ring were examined. Introduction of electron-donating groups into the catecholate ligand or replacement of an O atom (in catecholate) by a N atom (o-amidophenolate) stabilizes the monocationic forms of the complexes obtained by one-electron oxidation. Complexes with electron-withdrawing substituents undergo irreversible two-electron oxidation resulting in the elimination of o-quinone. Complexes containing electron-withdrawing ligands do not form o-semiquinones and are inert to atmospheric oxygen. According to electrochemical data, oxygen can be bound reversibly by catecholate complexes containing the electron-donating methoxy groups in the 3,6-di-tert-butylcatecholate ligand and o-amidophenolate derivatives with half-wave oxidation potentials lower than or equal to 0.70 V (vs. Ag/AgCl), which form relatively stable cationic complexes upon the oxidation.

Keywords

Catecholate Triphenylantimony Electrochemical Transformation Catecholate Complex Monocationic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zanello, P. and Corsini, M., Coord. Chem. Rev., 2006, vol. 250, nos. 15–16, p. 2000.CrossRefGoogle Scholar
  2. 2.
    Hall, M. and Sowerby, D.B., J. Am. Chem. Soc., 1980, vol. 102, p. 628.CrossRefGoogle Scholar
  3. 3.
    Holmes, R.R., Day, R.O., Chandrasekhar, V., and Holmes, J.M., Inorg. Chem., 1987, vol. 26, p. 157.CrossRefGoogle Scholar
  4. 4.
    Holmes, R.R., Day, R.O., Chandrasekhar, V., and Holmes, J.M., Inorg. Chem., 1987, vol. 26, p. 163.CrossRefGoogle Scholar
  5. 5.
    Gibbons, M.N., Begley, M.J., Blake, A.J., et al., Dalton Trans., 1997, p. 2419.Google Scholar
  6. 6.
    Tian, Z. and Tuck, D.G., Dalton Trans., 1993, p. 1381.Google Scholar
  7. 7.
    Biros, S.M., Bridgewater, B.M., Estrada, A.V., et al., Inorg. Chem., 2002, vol. 41, p. 4051.CrossRefGoogle Scholar
  8. 8.
    Bauer, G., Scheffler, K., and Stegmann, H.B., Chem. Ber., 1976, vol. 109, p. 2231.CrossRefGoogle Scholar
  9. 9.
    Stegmann, H.B. and Sheffler, K., Chem. Ber., 1968, vol. 101, p. 262.CrossRefGoogle Scholar
  10. 10.
    Abakumov, G.A., Poddel’sky, A.I., Grunova, E.V., et al., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, p. 2767.CrossRefGoogle Scholar
  11. 11.
    Cherkasov, V.K., Grunova, E.V., Poddel’sky, A.I., et al., J. Organomet. Chem., 2005, vol. 690, no. 5, p. 1273.CrossRefGoogle Scholar
  12. 12.
    Cherkasov, V.K., Abakumov, G.A., Grunova, E.V., et al., Chem. Eur. J., 2006, vol. 12, no. 24, p. 3916.CrossRefGoogle Scholar
  13. 13.
    Poddel’sky, A.I., Somov, N.N., Kurskii, Yu.A., et al., J. Organomet. Chem., 2009, vol. 693, nos. 21–22, p. 3451.Google Scholar
  14. 14.
    Abakumov, G.A., Cherkasov, V.K., Grunova, E.V., et al., Dokl. Akad. Nauk, 2005, vol. 405, no. 2, p. 199 [Dokl. (Engl. Transl.), vol. 405, no. 2, p. 222].Google Scholar
  15. 15.
    Poddel’skii, A.I., Smolyaninov, I.V., Kurskii, Yu.A., et al., Izv. Akad. Nauk, Ser. Khim., 2009, no. 3, p. 520.Google Scholar
  16. 16.
    Magdesieva, T.V., Ivanov, P.S., Kravchuk, D.N., and Butin, K.P., Elektrokhimiya, 2003, vol. 39, no. 11, p. 1390 [Russ. J. Elektrochem. (Engl. Transl.), vol. 39, no. 11, p. 1245].Google Scholar
  17. 17.
    Gordon, A.J. and Ford, R.A., A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.Google Scholar
  18. 18.
    Wegener, J., Kirschbaum, K., and Giolando, D.M., J. Chem. Soc., Dalton Trans., 1994, p. 1213.Google Scholar
  19. 19.
    Emsley, J., The Elements, Oxford: Clarendon, 1991.Google Scholar
  20. 20.
    Poddel’sky, A.I., Cherkasov, V.K., and Abakumov, G.A., Coord. Chem. Rev., 2009, vol. 253, p. 291.CrossRefGoogle Scholar
  21. 21.
    Piskunov, A.V., Aivaz’yan, I.A., Abakumov, G.A., et al., Izv. Akad. Nauk, Ser. Khim., 2007, no. 2, p. 253.Google Scholar
  22. 22.
    Smolyaninov, I.V., Letichevskaya, N.N., Kulakov, A.V., et al., Elektrokhimiya, 2007, vol. 43, no. 10, p. 1251 [Russ. J. Elektrochem. (Engl. Transl.), vol. 43, no. 10, p. 1187].Google Scholar
  23. 23.
    Dessey, R., Chivers, T., and Kitching, W., J. Am. Chem. Soc., 1966, vol. 88, p. 467.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • I. V. Smolyaninov
    • 1
  • A. I. Poddel’skiy
    • 2
  • N. T. Berberova
    • 1
  • V. K. Cherkasov
    • 2
  • G. A. Abakumov
    • 2
  1. 1.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  2. 2.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhni NovgorodRussia

Personalised recommendations