Russian Journal of Coordination Chemistry

, Volume 35, Issue 9, pp 657–662 | Cite as

Chemical and electrochemical syntheses of the binuclear zinc and cadmium chelates based on the sterically hindered Schiff bases

  • T. O. Shmakova
  • D. A. Garnovskii
  • K. A. Lysenko
  • E. P. Ivakhnenko
  • V. I. Simakov
  • I. S. Vasil’chenko
  • A. I. Uraev
  • A. S. Burlov
  • M. Yu. Antipin
  • A. D. Garnovskii
  • I. E. Uflyand
Article

Abstract

Chemical and electrochemical syntheses of a series of the zinc(II) and cadmium(II) complexes were carried out on the basis of sterically hindered Schiff bases, which are the condensation products of 4,6-di-tert-butyl-2-aminophenol with the salicylaldehyde derivatives (H2L, H2L1). The structures and compositions of the synthesized binuclear complexes M2L2 and M2L21 where M = Zn(II) and Cd(II), were proved by the data of elemental analysis, IR spectroscopy, and 1H NMR spectroscopy. The structures of the Zn2L2 · 2Py and Zn2L2 · 2DMF dimers were proved by X-ray diffraction analysis. The electrochemical dissolution of zero-valence zinc and cadmium in methanol in the presence of equimolar amounts of H2L and H2L1 made it possible to isolate dimeric complexes of the corresponding metals of the composition M2L2 and M221.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holm, R.H., Ewerett, M.J., and Chakravorty, A., Prog. Inorg. Chem., 1966, vol. 7, no. 1, p. 83.CrossRefGoogle Scholar
  2. 2.
    Maggio, F., Pizzino, T., and Romano, V., J. Inorg. Nucl. Chem., 1976, vol. 38, no. 4, p. 599.CrossRefGoogle Scholar
  3. 3.
    Hernandez Molina, R and Mederos, A, Comprehensive Coord. Chem. II, Lever, A.B.P., Ed., Amsterdam: Elsevier, 2003, vol. 1, p. 411.Google Scholar
  4. 4.
    Garnovskii, A.D. and Kharisov, B.I., Synthetic Coordination and Organometallic Chemistry, New York-Basel: Marcel Dekker, 2003.Google Scholar
  5. 5.
    Garnovskii, A.D. and Vasil’chenko, I.S., Usp. Khim., 2005, vol. 74, no. 3, p. 211.Google Scholar
  6. 6.
    Burlov, A.S., Antsyshkina, A.S., Romero, Kh., et al., Zh. Neorg. Khim., 1995, vol. 40, no. 9, p. 1480.Google Scholar
  7. 7.
    Garnovskii, D.A., Guedes Da Silva, M.F.C., Kopylovich, M.N., et al., Polyhedron, 2003, vol. 22, no. 10, p. 1335.CrossRefGoogle Scholar
  8. 8.
    Garnovskii, A.D., Burlov, A.S., Garnovskii, D.A., et al., Polyhedron, 1999, vol. 18, no. 6, p. 863.CrossRefGoogle Scholar
  9. 9.
    Banße, W., Fliegner, J., Sawusch, S., et al., Inorg. Chim. Acta, 1998, vol. 269, no. 2, p. 350.CrossRefGoogle Scholar
  10. 10.
    Chen, X., Femia, F.J., Babich, J.W., et al., Inorg. Chim. Acta, 2000, vol. 307, nos. 1–2, p. 149.CrossRefGoogle Scholar
  11. 11.
    Bluhm, M.E., Ciesielski, M., Gorls, H., et al., Inorg. Chem., 2003, vol. 42, no. 26, p. 8878.CrossRefGoogle Scholar
  12. 12.
    Ivakhnenko, E.P., Lyubchenko, S.N., Kogan, V.A., et al., Zh. Obshch. Khim., 1986, vol. 56, no. 4, p. 869.Google Scholar
  13. 13.
    Kompan, O.E., Ivakhnenko, E.P., Lyubchenko, S.N., et al., Zh. Obshch. Khim., 1990, vol. 60, no. 8, p. 1882.Google Scholar
  14. 14.
    Kasumov, V.T. and Medzhidov, A.A., Koord. Khim., 1995, vol. 21, no. 10, p. 783.Google Scholar
  15. 15.
    Bruni, S., Caneschi, A., Cariati, F., et al., J. Am. Chem. Soc., 1994, vol. 116, no. 4, p. 1388.CrossRefGoogle Scholar
  16. 16.
    Mukherjee, S., Weyhermüller, T., Böthe, E., et al., Eur. J. Inorg. Chem., 2003, no. 5, p. 863.Google Scholar
  17. 17.
    Mukherjee, S., Weyhermüller, T., and Böthe, E., Eur. J. Inorg. Chem., 2003, no. 10, p. 1956.Google Scholar
  18. 18.
    Cozzi, P.G., Chem. Soc. Rev., 2004, vol. 33, no. 7, p. 410.CrossRefGoogle Scholar
  19. 19.
    Darensbourg, D.J., Mackiewicz, R.M., Phelps, A.L., and Billodeaux, D.R., Acc. Chem. Res., 2004, vol. 37, no. 11, p. 836.CrossRefGoogle Scholar
  20. 20.
    Ivanchev, S.S., Usp. Khim., 2007, vol. 76, no. 7, p. 669.Google Scholar
  21. 21.
    Metelitsa, A.V., Burlov, A.S., Bezuglyi, S.O., et al., Koord. Khim., 2006, vol. 32, no. 12, p. 894 [Russ. J. Coord. Chem. (Engl. Transl.), vol. 32, no. 12, p. 858].Google Scholar
  22. 22.
    Qiao, J., Wang, L.D., Duan, L., et al., Inorg. Chem., 2004, vol. 43, no. 16, p. 5096.CrossRefGoogle Scholar
  23. 23.
    Ley, K. and Müller, E., Chem. Ber., 1956, vol. 89, no. 6, p. 1402.CrossRefGoogle Scholar
  24. 24.
    Khachatur’yan, G.A., Cand. Sci. (Chem.) Dissertation, Rostov-on-Don: Rostov State Univ., 1993.Google Scholar
  25. 25.
    Sheldrick, G.M., SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-Ray Diffraction Data. Rev. 5.1, 1998.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • T. O. Shmakova
    • 1
  • D. A. Garnovskii
    • 2
    • 3
  • K. A. Lysenko
    • 4
  • E. P. Ivakhnenko
    • 2
  • V. I. Simakov
    • 5
  • I. S. Vasil’chenko
    • 2
  • A. I. Uraev
    • 2
  • A. S. Burlov
    • 2
  • M. Yu. Antipin
    • 4
  • A. D. Garnovskii
    • 2
  • I. E. Uflyand
    • 1
  1. 1.Pedagogical InstituteSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia
  3. 3.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  4. 4.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  5. 5.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations