Russian Journal of Coordination Chemistry

, Volume 35, Issue 7, pp 486–491 | Cite as

New magnetically active metal complexes of tridentate Schiff bases of phenylazosalicylaldehyde

  • A. S. Burlov
  • S. A. Nikolaevskii
  • A. S. Bogomyakov
  • I. S. Vasil’chenko
  • Yu. V. Koshchienko
  • V. G. Vlasenko
  • A. I. Uraev
  • D. A. Garnovskii
  • E. V. Sennikova
  • G. S. Borodkin
  • A. D. Garnovskii
  • V. I. Minkin
Article

Abstract

The bidentate chelate Cu(II) complexes of phenylazosalicylaldehyde azomethines are synthesized for the first time and their magnetic properties are studied. The complexes with the intermetallic bridge of the nitrogen atoms are characterized by the antiferromagnetic interaction, whereas the ferromagnetic exchange is typical of analogous coordination compounds with the sulfur bridge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garnovskii, A.D., Vasil’chenko, I.S., and Garnovskii, D.A., Sovremennye aspekty sinteza metallokompleksov. Osnovnye ligandy i metody (Modern Aspects of Synthesis of Metal Complexes. Key Ligands and Methods), Rostov-on-Don: LaPO, 2000.Google Scholar
  2. 2.
    Synthetic Coordination and Organometallic Chemistry, Garnovskii, A.D. and Kharisov, B.I., Eds., New York: Marcel Dekker, 2003.Google Scholar
  3. 3.
    Kogan, V.A. and Shcherbakov, I.N., Ross. Khim. Zh., 2004, vol. 48, no. 1, p. 69.Google Scholar
  4. 4.
    Burlov, A.S., Uraev, A.I., Lysenko, K.A., et al., Koord. Khim., 2008, vol. 34, no. 12, p. 916 [Russ. J. Coord. Chem. (Engl. Transl.), vol. 34, no. 12, p. 904].Google Scholar
  5. 5.
    Khandar, A.A. and Nejati, K., Polyhedron, 2000, vol. 19, no. 6, p. 607.CrossRefGoogle Scholar
  6. 6.
    Pucci, D., Bellusci, A., Crispini, A., et al., Inorg. Chim. Acta, 2004, vol. 357, no. 2, p. 495.CrossRefGoogle Scholar
  7. 7.
    Gütlich, P., Garcia, Y., and Woike, T., Coord. Chem. Rev., 2001, vols. 219–221, p. 839.CrossRefGoogle Scholar
  8. 8.
    Foster, R., J. Chem. Soc., 1957, no. 11, p. 4687.Google Scholar
  9. 9.
    Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I., et al., Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-Ray Spectral Method for Study of the Structure of Amorphous Bodies: EXAFS Spectroscopy), Novosibirsk: Nauka, Sib. Otd., 1988.Google Scholar
  10. 10.
    Newville, M., EXAFS Analysis using FEFF and FEFFIT, J. Synchrotron Rad., 2001, vol. 8, p. 96.CrossRefGoogle Scholar
  11. 11.
    Zabinski, S.I., Rehr, J.J., Ankudinov, A., and Alber, R.C., Phys. Rev., B: Condens. Matter., 1995, vol. 52, p. 2995.Google Scholar
  12. 12.
    Costes, J.P., Dahan, F., Ruiz, J., and Laurent, J.P., Inorg. Chim. Acta, 1995, vol. 239, nos. 1–2, p. 53.CrossRefGoogle Scholar
  13. 13.
    Branscombe, N.D.J., Blake, A.J., Marin-Becerra, A., et al., Chem. Commun., 1996, p. 2573.Google Scholar
  14. 14.
    Hernandez-Molina, R and Mederoz, A, Comprehensive Coordination Chemistry, Lever, A.B.P., Ed., Amsterdam-Oxford: Elsevier-Pergamon Press, 2003, vol. 1, p. 411.Google Scholar
  15. 15.
    Yang, C.-T. and Vital, J., Inorg. Chim. Acta, 2003, vol. 344, no. 1, p. 65.CrossRefGoogle Scholar
  16. 16.
    Lo, W.-K., Wong, W.-K., Cuo, J., et al., Inorg. Chim. Acta, 2004, vol. 357, no. 15, p. 4510.CrossRefGoogle Scholar
  17. 17.
    Garnovskii, A.D. and Vasil’chenko, I.S., Usp. Khim., 2005, vol. 74, no. 3, p. 211.Google Scholar
  18. 18.
    Burlov, A.S., Koshchienko, Yu.V., Ikorskii, V.N., et al., Zh. Neorg. Khim., 2006, vol. 51, no. 7, p. 1143 [Russ. J. Inorg. Chem. (Engl. Transl.), vol. 51, no. 7, p. 1065].Google Scholar
  19. 19.
    Burlov, A.S., Ikorskii, V.N., Uraev, A.I., et al., Zh. Obshch. Khim., 2006, vol. 76, no. 8, p. 1337 [Russ. J. Gen. Chem. (Engl. Transl.), vol. 76, no. 8, p. 1282].Google Scholar
  20. 20.
    Kalinnikov, V.T. and Rakitin, Yu.V., Vvedenie v magnetokhimiyu (Introduction to Magnetochemistry), Moscow: Nauka, 1980.Google Scholar
  21. 21.
    Garnovskii, A.D., Ikorskii, V.N., Uraev, A.I., et al., J. Coord. Chem., 2007, nos. 12–14, p. 1493.Google Scholar
  22. 22.
    Fujino, M., Amano, T., Akutsu, H., et al., Chem. Commun., 2004, p. 2310.Google Scholar
  23. 23.
    Amano, T., Fujino, M., Akutsu, H., et al., Polyhedron, 2005, vol. 24, nos. 16–17, p. 2614.CrossRefGoogle Scholar
  24. 24.
    Fujino, M., Hasegava, S., Akutsu, H., et al., Polyhedron, 2007, vol. 26, no. 12, p. 2614.Google Scholar
  25. 25.
    Sato, O., Acc. Chem. Res., 2003, vol. 36, no. 9, p. 692.CrossRefGoogle Scholar
  26. 26.
    Nakatsuji, S., Chem. Soc. Rev., 2004, vol. 33, p. 348.CrossRefGoogle Scholar
  27. 27.
    Brefuel, N., Vang, I., Shova, S., et al., Polyhedron, 2007, no. 8, p. 1745.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. S. Burlov
    • 1
  • S. A. Nikolaevskii
    • 1
  • A. S. Bogomyakov
    • 2
  • I. S. Vasil’chenko
    • 1
  • Yu. V. Koshchienko
    • 1
  • V. G. Vlasenko
    • 3
  • A. I. Uraev
    • 1
  • D. A. Garnovskii
    • 4
  • E. V. Sennikova
    • 1
  • G. S. Borodkin
    • 1
  • A. D. Garnovskii
    • 1
  • V. I. Minkin
    • 1
    • 4
  1. 1.Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia
  2. 2.International Tomography Center, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  3. 3.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  4. 4.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia

Personalised recommendations