Russian Journal of Coordination Chemistry

, Volume 35, Issue 3, pp 179–185 | Cite as

Microwave synthesis, spectral studies, antimicrobial approach, and coordination behavior of antimony(III) and bismuth(III) compounds with benzothiazoline

  • K. Mahajan
  • M. Swami
  • R. V. SinghEmail author


The reaction of 2-hydroxy-N-phenylbenzamide with 2-aminobenzenethiol yielded 2-hydroxy-N-phenylbenzamidebenzothiazoline (H2-Saly · BTZ/HO⋂N⋂SH). The reaction of H2-Saly · BTZ with PhSbCl2, SbCl3, and BiCl3 under varied reaction conditions (microwave, as well as conventional method) gave corresponding antimony( III) and bismuth(III) Schiff base compounds (substitution along with addition) in different coordination environments. These complexes were characterized by elemental analysis, IR and NMR (1H and 13C) spectral studies. The ligand was found to bifunctional tridentate, as well as monodentate for different starting materials of metal (Sb/Bi), as well as for different reaction conditions, hence, suitable coordination environments and pseudotrigonal bipyramidal geometry for the antimony and bismuth complexes have been proposed. Their biological activities have also been checked against many fungi and bacteria. The complexes were found to be more toxic than the corresponding ligand. The article is published in the original.


Bismuth Antimony Coordination Chemistry Alternaria Alternata Microwave Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kidwai, M. Pure Appl. Chem., 2001, vol. 73, p. 147.CrossRefGoogle Scholar
  2. 2.
    Agrawal, M., Tandon, J.P., and Mehrotra, R.C., Inorg. Nucl. Chem., 1981, vol. 43, p. 1070.CrossRefGoogle Scholar
  3. 3.
    Chauhan, H.P.S., Srivastava, G., and Mehrotra, R.C., Indian J. Chem., 1984, vol. 23, p. 436.Google Scholar
  4. 4.
    Fahmi, N. and Singh, R.V., Transition Met. Chem., 1994, vol. 19, p. 453.Google Scholar
  5. 5.
    Kanoongo, N., Singh, R.V., Tandon, J.P., and Goyal, R.B., J. Inorg. Biochem., 1990, vol. 38, p. 57.CrossRefGoogle Scholar
  6. 6.
    Pandey, T. and Singh, R.V. Main, Group Met. Chem., 2000, vol. 23, p. 346.Google Scholar
  7. 7.
    Klapotke, T., Biol. Met., 1988, vol. 1, p. 69.CrossRefGoogle Scholar
  8. 8.
    Smith, K.A., Deacon, G.B., Jackson, W.R., et al., Metal Based Drugs, 1998, vol. 5, p. 295.CrossRefGoogle Scholar
  9. 9.
    Comprehensive Coordination Chemistry, Wilkinson, G., Ed., Oxford (UK): Pergamon, 1987.Google Scholar
  10. 10.
    Haiduc, I. and Silvestru, C., Organometallics in Cancer Therapy, Boca Raton, FL: CRC, 1989, vol. 3.Google Scholar
  11. 11.
    Khosa, M.K., Mazhar, M., Ali, S., et al., Turk. J. Chem., 2006, vol. 30, p. 345.Google Scholar
  12. 12.
    Handbook on Metals in Clinical and Analytical Chemistry, Iffland, R., Seiler, H.G., Sigel, A., and Sigel, H., Eds., New York: Marcel Dekker, 1994.Google Scholar
  13. 13.
    Nunn, M., Sowerby, D.B., and Wesolek, D.M., J. Organometal. Chem., 1983, vol. 45, p. 251.Google Scholar
  14. 14.
    Mahajan, K., Fahmi, N., and Singh, R.V., Indian J. Chem., A, 2007, vol. 46, p. 1221.Google Scholar
  15. 15.
    Vogel, A.I., A Text Book of Quantitative Inorganic Analysis, London: Longmans, 1989.Google Scholar
  16. 16.
    Comprehensive Analytical Chemistry, B, Wilson, C.L. and Wilson, D.W., Eds., New York: Elsevier, 1960, vol. 1.Google Scholar
  17. 17.
    Garg, R., Fahmi, N., and Singh, R.V., Russ. J. Coord. Chem., 2008, vol. 34, p. 203.Google Scholar
  18. 18.
    Singh, R.V., Mittal, S.P., Swami, M., and Mahajan, K., Int. J. Chem. Sci., 2007, vol. 5, p. 1417.Google Scholar
  19. 19.
    Chremos, G.N. and Zingaro, R.A., J. Organomet. Chem., 1970, vol. 2, p. 647.CrossRefGoogle Scholar
  20. 20.
    Brill, T.B. and Campbell, N.C., Inorg. Chem., 1973, vol. l2, p. 1884.CrossRefGoogle Scholar
  21. 21.
    Sharma, R.K., Singh, Y.P., and Rai, A.K., Synth. React. Inorg. Met.-Org. Chem., 2001, vol. 31, p. 405.CrossRefGoogle Scholar
  22. 22.
    Agoes, L., Burford, N., Cameron, T.S., et al., J. Am. Chem. Soc., 1996, vol. 118, p. 3225.CrossRefGoogle Scholar
  23. 23.
    Briand, G.G., Burford, N., Cameron, T.S., and Kwaitkoswki, W., J. Am. Chem. Soc., 1998, vol. 120, p. 177.CrossRefGoogle Scholar
  24. 24.
    Sharma, M.K., Sharma, M., Singh, A., and Mehrotra, R.C., Indian J. Chem., A, 2001, vol. 40, p. 1226.Google Scholar
  25. 25.
    Chauhan, H.P.S., Shrivastava, G., and Mehrotra, R.C., Indian J. Chem., A, 1984, vol. 23, p. 434.Google Scholar
  26. 26.
    Gaur, S., Maanju, S., Fahmi, N., and Singh, R.V., Main Group Met. Chem., 2005, vol. 28, p. 293.Google Scholar
  27. 27.
    Louie, A.Y. and Meade, T.J., Chem. Rev., 1999, vol. 99, p. 2711.CrossRefGoogle Scholar
  28. 28.
    Tweedy, B.G., Phytopathology, 1964, vol. 55, p. 910.Google Scholar
  29. 29.
    Garg, R., Saini, M.K., Fahmi, N., and Singh, R.V., Transition Met. Chem., 2006, vol. 31, p. 362.CrossRefGoogle Scholar
  30. 30.
    Lawrence, P.G., Harold, P.L., and Francis, O.G., Antibiotic and Chemotherapy, 1980, vol. 5, p. 1597.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of RajasthanJaipurIndia

Personalised recommendations