Advertisement

Russian Journal of Coordination Chemistry

, Volume 33, Issue 8, pp 588–593 | Cite as

Rhodium and ruthenium tetracarboxylate nitrosyl complexes: Electronic structure and metal-metal bond

  • O. V. Sizova
  • L. V. Skripnikov
  • A. Yu. Sokolov
  • N. V. Ivanova
Article

Abstract

The electronic structure of the tetracarboxylates M2(μ-O2CH)4, M2(μ-O2CH)4(L)2 (M = Ru, Rh; L = H2O, NO) was analyzed by the density functional theory with full geometry optimization. The inclusion of nitrogen oxide orbitals into the molecular orbitals forming the metal-metal bond affects all of the main characteristics of this bond and the concomitant properties. In the case of rhodium tetracarboxylates, one can consider destruction of the Rh-Rh covalent σ-bond and reorientation of two electrons from the internal region of the Rh2(μ-O2CH)4 core to the outside, toward the axial ligands to give Rh-N covalent bonds. The axial coordination of nitrogen oxide in Ru2(μ-O2CR)4 is accompanied by destruction of the metal-metal π-bond.

Keywords

Ruthenium Metal Atom Rhodium Natural Bond Orbital Nitrogen Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hilderbrand, S.A., Lim, M.H., and Lippard, S.J., J. Am. Chem. Soc., 2004, vol. 126, no. 15, p. 4972.CrossRefGoogle Scholar
  2. 2.
    Lindsay, A.J., Wilkinson, G., Motevalli, M., and Hursthouse, M.B., J. Chem. Soc., Dalton Trans., 1987, no. 11, p. 2723.Google Scholar
  3. 3.
    Jorgensen, C.K., Coord. Chem. Rev., 1966, vol. 1, nos. 1–2, p. 164.CrossRefGoogle Scholar
  4. 4.
    Cotton, F.A. and Walton, R.A., Mulpiple Bonds Between Metal Atoms, Oxford: Clarendon, 1993, Ch. 7.Google Scholar
  5. 5.
    Felthouse, T.R., Prog. Inorg. Chem., 1982, vol. 29, p. 73.CrossRefGoogle Scholar
  6. 6.
    Boyar, E.B. and Robinson, S.D., Coord. Chem. Rev., 1983, vol. 50, nos. 1–2, p. 109.CrossRefGoogle Scholar
  7. 7.
    Aquino, M.A.S., Coord. Chem. Rev., 1998, vol. 170, no. 1, p. 141.CrossRefGoogle Scholar
  8. 8.
    Chisholm, M.H., Christou, G., Folting, K., et al., Inorg. Chem., 1996, vol. 35, no. 12, p. 3643.CrossRefGoogle Scholar
  9. 9.
    Butin, K.P. and Zyk, N.V., Usp. Khim., 2005, vol. 74, no. 6.Google Scholar
  10. 10.
    Norman, J.G. and Kolari, H.J., J. Am. Chem. Soc., 1978, vol. 100, no. 3, p. 791.CrossRefGoogle Scholar
  11. 11.
    Norman, J.G., Renzoni, G.E., and Casel, D.A., J. Am. Chem. Soc., 1979, vol. 101, no. 18, p. 5256.CrossRefGoogle Scholar
  12. 12.
    Quelch, G.E., Hillier, I.H., and Guest, M.F., J. Chem. Soc., Dalton Trans., 1990, vol. 1, no. 10, p. 3075.CrossRefGoogle Scholar
  13. 13.
    Trishkina, E.M.Yu., Golubnichaya, M.A., and Baranovskii, I.B., Zh. Neorg. Khim., 1991, vol. 36, no. 5.Google Scholar
  14. 14.
    Sizova, O.V., J. Mol. Struct. (Theochem.), 2006, vol. 760, nos. 1–3, p. 183.CrossRefGoogle Scholar
  15. 15.
    Sizova, O.V., Skripnikov, L.V., Sokolov, A.Yu., and Lubimova, O.O., Abstracts of Papers, 10th V. A. Fock Meeting on Quantum and Computational Chemistry, Kazan, 2006, p. 1403.Google Scholar
  16. 16.
    Becke, A., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.CrossRefGoogle Scholar
  17. 17.
    Wadt, W.R. and Hay, P.J., J. Chem. Phys., 1985, vol. 82, no. 1, p. 284.CrossRefGoogle Scholar
  18. 18.
    Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, no. 1, p. 299.CrossRefGoogle Scholar
  19. 19.
    Andrae, D., Haussermann, U., Dolg, M., et al., Theor. Chim. Acta, 1990, vol. 77, p. 123.CrossRefGoogle Scholar
  20. 20.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian, Inc., Pittsburgh (PA, USA), 2003.Google Scholar
  21. 21.
    Reed, A.E., Curtiss, L.A., and Weinhold, F., Chem. Rev., 1988, vol. 88, no. 6, p. 899.CrossRefGoogle Scholar
  22. 22.
    Mayer, I., Intern. J. Quant. Chem., 1986, vol. 29, no. 1, p. 73.CrossRefGoogle Scholar
  23. 23.
    Mayer, I., Intern. J. Quant. Chem., 1986, vol. 29, no. 3, p. 477.CrossRefGoogle Scholar
  24. 24.
    Schmidt, M.W., Baldridge, K.K., and Boatz, J.A., J. Comput. Chem., 1993, vol. 14, no. 11, p. 1347.CrossRefGoogle Scholar
  25. 25.
    Granovsky, A., PC GAMESS. Version 6.4, Moscow: Moscow State Univ., 2004.Google Scholar
  26. 26.
    Wiberg, K.A., Tetrahedron, 1968, vol. 24, no. 3, p. 1083.CrossRefGoogle Scholar
  27. 27.
    Flukiger, P., Luthi, H.P., Portmann, S., and Weber, J., MOLEKEL 4.3, Swiss Center for Scientific Computing, Manno (Switzerland), 2000–2002.Google Scholar
  28. 28.
    Estiu, G., Cukiernik, F.D., Maldivi, P., and Poizat, O., Inorg. Chem., 1999, vol. 38, no. 13, p. 3030.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • O. V. Sizova
    • 1
  • L. V. Skripnikov
    • 1
  • A. Yu. Sokolov
    • 1
  • N. V. Ivanova
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations