Advertisement

Russian Journal of Coordination Chemistry

, Volume 33, Issue 5, pp 313–322 | Cite as

Quantum-chemical study of donor-acceptor interactions in rhodium(I) carbonyl carboxylate complexes with phosphine ligands

  • O. V. Sizova
  • Yu. S. Varshavskii
  • L. V. Skripnikov
Article

Abstract

The DFT B3LYP method was used to optimize the geometries, calculate the IR spectra, and analyze the electronic structures of carbonyl(carboxylato)(phosphine)rhodium(I) complexes, namely, trans-[Rh(Cl)(CO)(PPh3)2], trans-[Rh(OCOR)(CO)(PPh3)2] (R = H, CH3, and CF3), and trans-[Rh(OCOH)(CO)(PX3)2], and free PX3 molecules (X = H, F, CH3, i-Pr, Cy, and Ph). A linear correlation between v(CO) in the IR spectra of trans-[Rh(OCOH)(CO)(PX3)2] and the HOMO energy of the free PX3 molecule was found for phosphines with nonaromatic substituents X. It was concluded that the electronic state of the CO group is mainly determined by the σ-donor properties of phosphines. The distinctive features of the electronic structure of triphenylphosphine are discussed.

Keywords

Coordination Chemistry Natural Bond Orbital LUMO Energy Acceptor Interaction Phosphine Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roodt, A., Otto, S., and Steyl, G., Coord. Chem. Rev., 2003, vol. 245, nos. 1–2, p. 121.CrossRefGoogle Scholar
  2. 2.
    Otto, S. and Roodt, A., Inorg. Chim. Acta, 2004, vol. 357, no. 1, p. 1.CrossRefGoogle Scholar
  3. 3.
    Kühl, O., Coord. Chem. Rev., 2005, vol. 249, nos. 5–6, p. 693.CrossRefGoogle Scholar
  4. 4.
    Cooney, K.D., Cundari, T.R., Hoffman, N.W., et al., J. Am. Chem. Soc., 2003, vol. 125, no. 14, p. 4318.PubMedCrossRefGoogle Scholar
  5. 5.
    Varshavskii, Yu.S., Cherkasova, T.G., Podkorytov, I.S., et al., Koord. Khim., 2005, vol. 31, no. 2, p. 121.Google Scholar
  6. 6.
    Sizova, O.V., Varshavskii, Yu.S., and Nikol’skii, A.B., Koord. Khim., 2005, vol. 31, no. 12, p. 921.Google Scholar
  7. 7.
    Gilheany, D.G., Chem. Rev., 1994, vol. 94, no. 5, p. 1339.CrossRefGoogle Scholar
  8. 8.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian, Inc., Pittsburg (PA, USA), 2003.Google Scholar
  9. 9.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., et al., J. Comput. Chem., 1993, vol. 14, no. 11, p. 1347.CrossRefGoogle Scholar
  10. 10.
    Granovsky, A., PC GAMESS. Version 6.4, Moscow: Moscow State Univ., 2004.Google Scholar
  11. 11.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.CrossRefADSGoogle Scholar
  12. 12.
    Wadt, W.R. and Hay, P.J., J. Chem. Phys., 1985, vol. 82, no. 1, p. 284.CrossRefADSGoogle Scholar
  13. 13.
    Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, no. 1, p. 299.CrossRefADSGoogle Scholar
  14. 14.
    Reed, A.E., Curtiss, L.A., and Weinhold, F., Chem. Rev., 1988, vol. 88, no. 6, p. 899.CrossRefGoogle Scholar
  15. 15.
    Mayer, I., Int. J. Quantum Chem., 1986, vol. 29, no. 1, p. 73.CrossRefGoogle Scholar
  16. 16.
    Mayer, I., Int. J. Quantum Chem., 1986, vol. 29, no. 3, p. 477.CrossRefGoogle Scholar
  17. 17.
    Flukiger, P., Luthi, H.P., Portmann, S., and Weber, J., MOLEKEL, 4.3., Manno (Switzerland): Swiss Center for Scientific Computing, 2000–2002.Google Scholar
  18. 18.
    Marynick, D.S., J. Am. Chem. Soc., 1984, vol. 106, no. 14, p. 4064.CrossRefGoogle Scholar
  19. 19.
    Orpen, A.G. and Connelly, N.G., Organometallics, 1990, vol. 9, no. 4, p. 1206.CrossRefGoogle Scholar
  20. 20.
    Orpen, A.G. and Connelly, N.G., J. Chem. Soc., Chem. Commun., 1985, no. 19, p. 1310.Google Scholar
  21. 21.
    Tolman, C.A., Chem. Rev., 1977, vol. 77, no. 3, p. 313.CrossRefGoogle Scholar
  22. 22.
    Lichtenberger, D.L. and Jatcko, M.E., Inorg. Chem., 1992, vol. 31, no. 3, p. 451.CrossRefGoogle Scholar
  23. 23.
    Sokol, V.I., Gol’dshleger, N.F., and Porai-Koshits, M.A., Koord. Khim., 1993, vol. 19, no. 1, p. 47.Google Scholar
  24. 24.
    Grushin, V.V., Kuznetsov, V.F., Bensimon, C., and Alper, H., Organometallics, 1995, vol. 14, no. 8, p. 3927.CrossRefGoogle Scholar
  25. 25.
    Kemp, G., Roodt, A., and Purcell, W., Rhodium Express, 1995, no. 12, p. 21.Google Scholar
  26. 26.
    Moigno, D., Kiefer, W., Callejas-Gaspar, B., et al., New J. Chem., 2001, vol. 25, no. 11, p. 1389.CrossRefGoogle Scholar
  27. 27.
    Keim, W., Becker, J., and Trzeciak, A.M., J. Organomet. Chem., 1989, vol. 372, no. 3, p. 447.CrossRefGoogle Scholar
  28. 28.
    Yoshida, T., Thorn, D.L., Okano, T., et al., J. Am. Chem. Soc., 1979, vol. 101, no. 15, p. 4212.CrossRefGoogle Scholar
  29. 29.
    Yarbrough, L.W. and Hall, M.B., Inorg. Chem., 1978, vol. 17, no. 8, p. 2269.CrossRefGoogle Scholar
  30. 30.
    Daamen, H., Oskam, A., and Stufkens, D.J., Inorg. Chim. Acta, 1980, vol. 38, no. 1, p. 71.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • O. V. Sizova
    • 1
  • Yu. S. Varshavskii
    • 1
  • L. V. Skripnikov
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations