Advertisement

Russian Journal of Coordination Chemistry

, Volume 32, Issue 8, pp 579–585 | Cite as

Complex formation in Cu(II)-thioamide-carbonyl compound systems in ethanol solutions

  • G. A. Chmutova
  • T. A. Shumilova
  • V. I. Morozov
  • M. A. Kazymova
  • O. V. Mikhailov
Article
  • 63 Downloads

Abstract

The structures of metal complexes formed in systems Cu(II)-thioamide-carbonyl compounds in water-ethanol solutions were studied by spectroscopic and quantum-chemical methods. It was found that in systems containing thiocarbohydrazide, the processes of template synthesis in water-ethanol solution and in gelatin-immobilized matrices differ substantially. In the case of dithiooxamide and dithiomalonamide, no products of template synthesis were detected; these amides give with the Cu2+ ion the chelate complexes with a ratio Cu2+: ligand = 1: 2 and with the N2S2 coordination core for dithiooxamide and S4 coordination core for dithiomalonamide. The quantum-chemical calculations in terms of the density functional theory were shown to adequately describe the structures of metal complexes and relative thermodynamic characteristics of the template synthesis processes in the systems under study.

Keywords

Carbonyl Compound Diacetyl Template Synthesis Chelate Complex Thiocarbohydrazide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mikhailov, O.V., Shumilova, T.A., and Kazymova, M.A., Heterocycl. Commun., 2003, vol. 9, no. 1, p. 61.Google Scholar
  2. 2.
    Mikhailov, O.V., Kazymova, M.A., Shumilova, T.A., and Vafina, L.R., Heterocycl. Commun., 2000, vol. 6, no. 4, p. 357.Google Scholar
  3. 3.
    Mikhailov, O.V., Kazymova, M.A., Shumilova, T.A., et al., Transition Met. Chem. (London), 2003, vol. 28, no. 5, p. 592.CrossRefGoogle Scholar
  4. 4.
    Mikhailov, O.V., Kazymova, M.A., Shumilova, T.A., and Solovieva, S.E., Transition Met. Chem. (London), 2003, vol. 28, no. 6, p. 665.CrossRefGoogle Scholar
  5. 5.
    Mikhailov, O.V., Kazymova, M.A., Shumilova, T.A., et al., Transition Met. Chem. (London), 2005, vol. 30, no. 1, p. 18.CrossRefGoogle Scholar
  6. 6.
    Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, nos. 1–3, p. 151.CrossRefGoogle Scholar
  7. 7.
    Stevens, W.J., Bash, H., and Krauss, M., J. Chem. Phys., 1984, vol. 81, no. 12, p. 6026.CrossRefGoogle Scholar
  8. 8.
    Perdew, J.A., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.CrossRefGoogle Scholar
  9. 9.
    Emleus, H.J. and Sharpe, A.G., Advances in Inorganic Chemistry and Radiochemistry, New York-London: Academic, 1970, vol. 13, p. 317.Google Scholar
  10. 10.
    Kon’kin, A.L., Shtyrlin, V.G., Zabirov, N.G., et al., Zh. Neorg. Khim., 1996, vol. 41, no. 7, p. 1156 [Russ. J. Inorg. Chem. (Engl. Transl.), vol. 41, no. 7, p. 1107].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • G. A. Chmutova
    • 1
  • T. A. Shumilova
    • 1
  • V. I. Morozov
    • 2
  • M. A. Kazymova
    • 1
  • O. V. Mikhailov
    • 3
  1. 1.Kazan State UniversityKazanRussia
  2. 2.Arbuzov Institute of Organic and Physical ChemistryKazanRussia
  3. 3.Kazan State Technological UniversityKazanRussia

Personalised recommendations