Advertisement

Izvestiya, Physics of the Solid Earth

, Volume 55, Issue 6, pp 879–885 | Cite as

Microcracks in Basalt and Tonalite at Friction

  • V. I. Vettegren
  • A. V. PonomarevEmail author
  • R. I. Mamalimov
  • I. P. Shcherbakov
  • K. Arora
  • D. Srinagesh
  • R. K. Chadha
Article
  • 1 Downloads

Abstract—The growth rate and size of microcracks formed in the surface layer of basalt and tonalite (granodiorite) at friction are studied using luminescence. It is found that upon breaking of crystal lattices of labradorite and quartz contained in these rocks, triboluminescence signals arise. Each signal corresponds to an embryo microcrack whose surface contains electronically excited free radicals ≡Si–O, Fe3+ ions, and electron traps. The average growth rate of embryo microcracks in basalt varies from ~0.6 to ~1 km/s and in tonalite, from ~ 0.7 to ~1.3 km/s. The sizes of embryo microcracks in basalt range within ~3 to ~5.5 μm and in tonalite from ~3.5 to ~6.5 μm.

Keywords:

luminescence embryo microcracks electron traps triboluminescence 

Notes

ACKNOWLEDGMENTS

We are grateful to M.A. Matveev for the petrographic description of thin sections, M.A. Krasnova and D.E. Beloborodov for measuring the velocities of ultrasonic waves in the samples. Z.-U.Ya. Maybuk and A.An. Khromov prepared the disks and rods of the studied rocks for the experiments. This study was started in 2018 with the joint support from the Russian Science Foundation and DST (India) under project no. 16-47-02003 and from the Russian Foundation for Basic Research (project no. 16-05-00137) and was completed in partial fulfillment of the government tasks (determination and analysis of spectra, description and interpretation of data, technical measurements).

REFERENCES

  1. 1.
    Abramova, K.B., Rusakov, A.I., Semenov, A.A., and Shcherbakov, I.P., Luminescence of metals excited by fast nondestructive loading, Phys. Solid State,1998, vol. 40, no. 6, pp. 877–883.CrossRefGoogle Scholar
  2. 2.
    Abramova, K.B., Vettegren, V.I., Shcherbakov, I.P., Rakhimov, S.Sh., and Svetlov, V.N., Mechanoluminescence and the submicrorelief of copper surface., Zh. Tekhn. Fiz., 1999, vol. 69, no. 12, pp. 102–104.Google Scholar
  3. 3.
    Aksenenko, M.D. and Baranochnikov, M.L., Priemniki opticheskogo izlucheniya—Spravochnik (Optical radiation receivers: A Reference), Moscow: Radio i svyaz’, 1987.Google Scholar
  4. 4.
    Antonov-Romanovskii, V.V., Kinetika fotolyuminestsentsii kristallofosforov (Kinetics of Photoluminescence of Crystallophosphorus), Moscow: Nauka, 1966.Google Scholar
  5. 5.
    Baril, M.R., and Huntley, D.J., Infrared stimulated luminescence and phosphorescence spectra of irradiated feldspars, J. Phys. Condens. Matter, 2003, vol. 15, pp. 8029– 8048.CrossRefGoogle Scholar
  6. 6.
    Beckman, J., A History of Inventions, Discoveries, and Origins, Translated from the German by William Johnston, Fourth Edition, carefully revised and enlarged by W. Francis and J.W. Griffith, vol. 1, London: Bohn, 1846.Google Scholar
  7. 7.
    Belyaev, L.M., Nabatov, V.V., and Martyshev, Yu.N., On the time of glow at tribo- and crystalloluminescence, Kristallografiya, 1962, vol. 4, no 7, pp. 576–580.Google Scholar
  8. 8.
    Betekhtin, V.I., and Kadomtsev, A.G., Evolution of microscopic cracks and pores in solids under loading, Phys. Solid State, 2005, vol. 47, no. 5, pp. 825–831.CrossRefGoogle Scholar
  9. 9.
    Chandra, B.P., and Zink J.I., Turboluminescence and dynamics of crystal fracture, Phys. Rev. B: Solid State, 1980, vol. 21, pp. 816–826.CrossRefGoogle Scholar
  10. 10.
    Chapman, G.N., and Walton, A.J., Triboluminescence of glasses and quartz, J. Appl. Phys., 1983, vol. 54, no. 10, pp. 5961–5968.CrossRefGoogle Scholar
  11. 11.
    Cheremskoi, P.G., Slezov, V.V., and Betekhtin, V.I., Pory v tverdom tele (Pores in a Solid), Moscow: Energoatomizdat, 1990.Google Scholar
  12. 12.
    Chudáček, The kinetics of the triboluminescence of zinc sulphide, J. Czechoslovak J. Phys. B, 1967, vol. 17, no. 1, pp. 34–42.CrossRefGoogle Scholar
  13. 13.
    Cottrell, A.H., Theory of Crystal Dislocations, New York.: Gordon and Breach, 1964.Google Scholar
  14. 14.
    Götze, J., Application of cathodoluminescence microscopy and spectroscopy in geosciences, Microsc. Microanal., 2012, vol. 18, pp. 1270–1284.CrossRefGoogle Scholar
  15. 15.
    Hardy, G.E., and Zink, J.I., Triboluminescence and pressure dependence of the photoluminescence of tetrahedral manganese complexes, Inorg. Chem., 1976, vol. 15, pp. 3061–3065.CrossRefGoogle Scholar
  16. 16.
    Huntley, D.J., Godfrey-Smith, D.I., and Thewalt M.L.W., Optical dating of sediments, Nature, 1985, vol. 313, pp. 105–107.CrossRefGoogle Scholar
  17. 17.
    Huntley, D.J., Baril, M.R., and Haidar, S., Tunneling in plagioclase feldspars, J. Phys. D: Appl. Phys. 2007, vol. 40, no. 3, pp. 900–906.CrossRefGoogle Scholar
  18. 18.
    Kawaguchi, Y., Time-resolved fractoluminescence spectra of silica glass in a vacuum and nitrogen atmosphere, Phys. Rev. B., 1995, vol. 52, no 13, pp. 9224–9228.CrossRefGoogle Scholar
  19. 19.
    Kawaguchi, Y., Fractoluminescence spectra in crystalline Quartz, Jpn. J. Appl. Phys., 1998a, vol. 37, pp. 1892–1896.CrossRefGoogle Scholar
  20. 20.
    Kawaguchi, Y., Charged particle emission and luminescence upon bending fracture of granite, Jpn. J. Appl. Phys., 1998b, vol. 37, pp. 3495–3499.CrossRefGoogle Scholar
  21. 21.
    Krbetschek, M.R., and Rieser, U., Luminescence spectra of alkali feldspars and plagioclases, Radiat. Meas., 1995, vol. 24, pp. 473–477.CrossRefGoogle Scholar
  22. 22.
    Kuksenko, V.S., Stanchits, S.A., and Tomilin, N.G., Size estimation of growing cracks in the release area from the parameters of acoustic signals, Mekh. Kompozit. Mater. 1983, no. 3, pp. 23–28.Google Scholar
  23. 23.
    Langford, C., Zhenyi, Ma, and Dickinson, J.T., Photon emission as a probe of chaotic processes accompanying fracture, J. Mater. Res., 1989, vol. 4, pp. 1272–1279.CrossRefGoogle Scholar
  24. 24.
    Longchambon, H., Recherches experimentales sur les phenomenes de triboluminescence et de cristalloluminescence, Bull. Soc. Fr. Miner., 1925, vol. 48, pp. 130–211.Google Scholar
  25. 25.
    Martyshev, Yu.N., Study of luminescence and electrization under deformation, Kristallografiya, 1965, vol. 10, no. 2, pp. 224–230.Google Scholar
  26. 26.
    Molotskii, M.I., Electronic excitations during fracture of crystals, Izv. Sib. Otd. Akad.Nauk SSSR, 1983, no. 12, pp. 30–40.Google Scholar
  27. 27.
    Parkhomenko, E.I., Yavleniya elektrizatsii v gornykh porodakh (Electrization Phenomena in Rocks), Moscow: Nauka, 1968.Google Scholar
  28. 28.
    Parkhomenko, E.I. and Martyshev, Yu.N., The phenomena of electrization and luminescence of minerals during deformation and fracture, in Fizika ochaga zemletryasenii (Earthquake Source Physics), Moscow: Nauka, 1975, pp. 151–159.Google Scholar
  29. 29.
    Petrov, V.A., Bashkarev, A.Ya., and Vettegren, V.I., Fizicheskie osnovy prognozirovaniya dolgovechnosti konstruktsionnykh materialov (Basic Physical Principles for Forecasting the Durability of Structural Materials), St. Petersburg: Politekhnika, 1993. Regel’, V.R., Slutsker, A.I., and Tomashevskii, E.E., Kineticheskaya priroda prochnosti tverdykh tel (Kinetic Nature of the Strength in Solids), Moscow: Nauka, 1974.Google Scholar
  30. 30.
    Sage, I., and Bourhill, G., Triboluminescent materials for structural damage monitoring, J. Materials Chem., 2001, vol. 11, no. 2, pp. 231–245.  https://doi.org/10.1039/b007029g CrossRefGoogle Scholar
  31. 31.
    Shaocheng, Ji., and Mainprice, D., Natural deformation fabrics of plagioclase: implications for slip systems and seismic anisotropy, Tectonophysics, 1988, vol. 147, pp. 145–163.CrossRefGoogle Scholar
  32. 32.
    Sobolev, G.A. and Ponomarev, A.V., Acoustic emissiya and stages of fracture preparation in laboratory experiment, Vulkanol. Seismol., 1999, nos. 4–5, pp. 50–62.Google Scholar
  33. 33.
    Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Earthquake Physics and Precursors), Moscow: Nauka, 2003.Google Scholar
  34. 34.
    Stroh, A.N., Theory of fracture of metals, Proc. Roy. Soc., 1957, vol. 6, no. 24, pp. 418–465.Google Scholar
  35. 35.
    Sweeting, L.M., and Guido, J.L., An improved method for determining. Triboluminescence spectra, J. Lumin., 1985, vol. 33, pp. 167–173.CrossRefGoogle Scholar
  36. 36.
    Toyoda, S., Rink, W.J., Schwarcz, H.P., and Rees-Jones, J., Crushing effects on TL and OSL on quartz: relevance to fault dating, Radiat. Meas., 2000, vol. 32, pp. 667–672.CrossRefGoogle Scholar
  37. 37.
    Turro, N.J., Ramamurthy, V., and Scaiano, J.C., Modern Molecular Photochemistry, Sausalito: University Sci. Books, 2010.Google Scholar
  38. 38.
    Vettegren, V.I., Savitskii, A.V., Shcherbakov, I.P., and Mamalimov, R.I., Triboluminescence of polymers and composites, Vopr. Materialoved., 2009, vol. 57, no. 1, p. 141–145.Google Scholar
  39. 39.
    Vettegren, V.I., Kuksenko, V.S., and Shcherbakov, I.P., Emission kinetics of light, sound, and radio waves from single-crystalline quartz after impact on its surface, Tech. Phys., 2011, vol. 56, no. 4, pp. 577–580.CrossRefGoogle Scholar
  40. 40.
    Vettegren, V.I., Kuksenko, V.S., Mamalimov, R.I., and Shcherbakov I.P., Dynamics of fractoluminescence, electromagnetic and acoustic emissions upon impact on a granite surface, Izv.,Phys. Solid Earth, 2012a, vol. 48, no. 5, pp. 415–420.CrossRefGoogle Scholar
  41. 41.
    Vettegren, V.I., Kuksenko, V.S., and Shcherbakov, I.P., Dynamics of microcracks and time dependences of surface deformation of a heterogeneous body (granite) under an impact, Phys. Solid State, 2012b, vol. 54, no. 7, pp. 1425–1429.CrossRefGoogle Scholar
  42. 42.
    Vettegren, V.I., Kuksenko, V.S., and Shcherbakov, I.P., The mechanism and dynamics of rock fracture upon mechanical impact and electric discharge, Izv.,Phys. Solid Earth, 2016, vol. 52, no. 5, pp. 754–769.CrossRefGoogle Scholar
  43. 43.
    Vettegren, V.I., Sobolev, G.A., Ponomarev, A.V., Shcherbakov, I.P., and Mamalimov, R.I., Nanosecond dynamics of destruction of the surface layer of a heterogeneous nanocrystalline solid (sandstone) under the friction, Phys. Solid State, 2017a, vol. 59, no. 5, pp. 955–959.CrossRefGoogle Scholar
  44. 44.
    Vettegren, V.I., Ponomarev, A.V., Shcherbakov, I.P., and Mamalimov, R.I., The influence of the structure of a nanocrystalline solid (sandstone) on the dynamics of microcrack accumulation on friction, Phys. Solid State, 2017b, vol. 59, no. 8, pp. 1580–1583.CrossRefGoogle Scholar
  45. 45.
    Vettegren, V.I., Ponomarev, A.V., Shcherbakov, I.P., and Mamalimov, R.I., Destruction dynamics of a heterogeneous body (diorite) under friction, Phys. Solid State, 2017c, vol. 59, no. 11, pp. 2286–2289.CrossRefGoogle Scholar
  46. 46.
    Vettegren, V.I., Ponomarev, A.V., Arora, K., Raza, Haris, Mamalimov, R.I., Shcherbakov, I.P., and Fokin, I.V., Nanosecond dynamics of the destruction of heterogeneous natural bodies by friction, Phys. Solid State, 2018, vol. 60, no. 11, pp. 2300–2304.CrossRefGoogle Scholar
  47. 47.
    Zakrevskii, V.A., and Shuldiner, A.V., Electron emission and luminescence owing to plastic deformation of ionic crystals, Philos. Mag. B, 1995, vol. 71, no. 2, pp. 127–138.CrossRefGoogle Scholar
  48. 48.
    Zhurkov, S.N., Kuksenko, V.S., and Petrov, V.A., Basic physics for predicting mechanical failure, Dokl. Akad. Nauk SSSR, 1981, vol. 259, no. 6, p. 1350–1353.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. I. Vettegren
    • 1
    • 2
  • A. V. Ponomarev
    • 1
    Email author
  • R. I. Mamalimov
    • 1
    • 2
  • I. P. Shcherbakov
    • 1
  • K. Arora
    • 3
  • D. Srinagesh
    • 3
  • R. K. Chadha
    • 3
  1. 1.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  2. 2.Ioffe Physical Technical Institute, Russian Academy of SciencesSt. PetersburgRussia
  3. 3.CSIR: National Geophysical Research Institute (NGRI) TelanganaIndia

Personalised recommendations