Advertisement

Izvestiya, Physics of the Solid Earth

, Volume 55, Issue 6, pp 841–863 | Cite as

Paleomagnetic, Sedimentological, and Isotopic Data on Neoproterozoic Periglacial Sediments of Siberia: A New Perspective on the Low-Latitude Glaciations Problem

  • A. V. ShatsilloEmail author
  • S. V. Rud’ko
  • I. V. Latysheva
  • D. V. Rud’ko
  • I. V. Fedyukin
  • S. V. Malyshev
Article

Abstract—Paleo- and rock magnetic, sedimentological, and isotope geochemical study is carried out for the carbonate member of Late Neoproterozoic Nichatka Formation (Siberian Platform, western slope of the Aldan Shield) enclosed within glacial deposits corresponding to the hypothetical event of “Snowball Earth” global glaciation. Based on the sedimentological, rock magnetic, and geochemical indications it is established that sediments composing this member have varve-type seasonal stratification and, according to our estimates, have been accumulated for at most 13 thousand years. Obtaining the detailed paleomagnetic data for the Precambrian varves allowed us to reveal a linear trend in the distribution of the virtual geomagnetic poles and to link it with the peculiarity of secular variation of the geomagnetic field during the time span of the Nichatka Formation. The paleomagnetic record in the periglacial sediments of the Nichatka Formation testifies to their deposition close to the equator which might be considered as supporting the Snowball Earth hypothesis. However, the absence of annual temperature fluctuations within the equatorial belt makes the formation of seasonal deposits at low latitudes barely possible and completely excludes such a possibility in the conditions close to total glaciation. The contradiction between paleoclimatic and paleomagnetic data is not explained in the context of the actualistic model of the geomagnetic field. The peculiarities of the paleomagnetic record in the Nichatka Formation, similar to the record of the field during the reversal, suggest that the geomagnetic field in the Neoproterozoic could be determined by substantial contribution of the low-latitude non-axial-dipole component. This peculiarity of the Neoproterozoic geomagnetic field can explain the entire set of the worldwide paleomagnetic data implying low latitude glaciations in the Neoproterozoic.

Keywords:

Siberian platform paleomagnetism secular variation equatorial dipole reversals LLSVP Neoproterozoic varves glaciations Snowball Earth hypothesis 

Notes

ACKNOWLEDGMENTS

We are grateful to the staff of the Interdisciplinary Center for Analytical Microscopy and the Research Laboratory of Paleoclimatology, Paleoecology, and Paleomagnetism of Kazan Federal University, Kazan: V.V. Vorobiev and L.R. Kosareva for performing the study of the magnetic separate. We also thank N.M. Chumakov, R.V. Veselovsky, V.P. Shcherbakov, and two anonymous reviewers for their valuable recommendations on improving the paper.

FUNDING

The field work, sedimentological, rock magnetic studies and data interpretation were supported by the Russian Foundation for Basic research (project no. 17-05-00021); isotopic studies were conducted under project no. 18-77-00059 funded by the Russian Science Foundation, paleomagnetic studies were carried out within the framework of the state assignment of the IPE RAS, task no. 0144-2014-0091.

REFERENCES

  1. 1.
    Abrajevitch, A., and Van der Voo, R., Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis, Earth Planet. Sci. Lett., 2010, vol. 293, pp. 164–170.CrossRefGoogle Scholar
  2. 2.
    Allen, P.A., and Etienne, J.L., Sedimentary challenge to snowball Earth, Nat. Geosci., 2008, vol. 1, no. 12, pp. 817–825.CrossRefGoogle Scholar
  3. 3.
    Antipin, V.S., Pokrovsky, B.G., and Fedorov, A.M., Formation of the Patom Crater by Phreatic Explosion: Geological and Isotope-Geochemical Evidence, Lithol. Miner. Resour., 2015, vol. 50, no. 6, pp. 478–487.CrossRefGoogle Scholar
  4. 4.
    Asikainen, C.A., Francus, P., and Brigham-Grette, J., Sedimentology, clay mineralogy and grain-size as indicators of 65 ka of climate change from El’gygytgyn Crater Lake, northeastern Siberia, J. Paleolimnol., 2007, vol. 37, no. 1, pp. 105–122.CrossRefGoogle Scholar
  5. 5.
    Bao, X., Zhang, S., Jiang, G., Wu, H., Li, H., Wang, X., An, Z., and Yang, T., Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China, Earth Planet. Sci. Lett., 2018, vol. 483. pp. 52–63.CrossRefGoogle Scholar
  6. 6.
    Bilardello, D., and Kodama, K.P., Rock magnetic evidence for inclination shallowing in the Early Carboniferous Deer Lake Group red beds of western Newfoundland, Geophys. J. Int., 2010, vol. 181, no 1, pp. 275–289.CrossRefGoogle Scholar
  7. 7.
    Bono, R.K., Tarduno, J.A., Nimmo, F., and Cottrell, R.D., Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity, Nat. Geosci., 2019, vol. 12, no. 2, pp. 143–147.CrossRefGoogle Scholar
  8. 8.
    Chumakov, N.M., Oledeneniya Zemli: istoriya, stratigraficheskoe znachenie i rol’ v biosfere (Earth’s Glaciations: History, Stratigraphic Significance and Role in the Biosphere), Trans. Geol. Inst., vol. 611, Moscow: GEOS, 2015.Google Scholar
  9. 9.
    Chumakov, N.M., and Kernitskii, V.V., The Stratotype and facies of the glacial Lower Vendian Nichatka Formation,Chara river basin, central Siberia, Stratigr. Geol. Correl., 2016, vol. 24, no. 4, pp. 331–338.CrossRefGoogle Scholar
  10. 10.
    Clement, B.M., Dependence of the duration of geomagnetic polarity reversals on site latitude, Nature, 2004, vol. 428, pp. 637–640.CrossRefGoogle Scholar
  11. 11.
    Coe, R.S., Hongre, L., and Glatzmaier, G.A., An examination of simulated geomagnetic reversals from a palaeomagnetic perspective, Philos. Trans. R. Soc. Lond.,Ser. A, 2000, vol. 358, pp.1141–1170.Google Scholar
  12. 12.
    Driscoll, P.E., Simulating 2 Ga of geodynamo history, Geophys. Res. Lett., 2016, vol. 43, pp. 5680–5687.CrossRefGoogle Scholar
  13. 13.
    Driscoll, P., Geodynamo recharged, Nat. Geosci., 2019, vol. 12, no. 2, pp.83–84.CrossRefGoogle Scholar
  14. 14.
    Dziewonski, A.M., Lekic, V., and Romanowicz, B., Mantle Anchor Structure: An argument for bottom up tectonics, Earth Planet. Sci. Lett., 2010, vol. 299, nos. 1–2, pp. 69–79.CrossRefGoogle Scholar
  15. 15.
    Embleton, B.J.J., and Williams, G.E., Low palaeolatitude of deposition for Late Precambrian periglacial varvites in South Australia: implications for palaeoclimatology, Earth Planet. Sci. Lett., 1986, vol. 79, pp. 419–430.CrossRefGoogle Scholar
  16. 16.
    Evans, D.A.D., and Raub, T.D., Neoproterozoic glacial palaeolatitudes: a global update, in The Geological Record of Neoproterozoic Glaciations, Geol. Soc. London Mem., vol. 36, Arnaud, E., Halverson, G.P., and Shields-Zhou, G., Eds., Bath: Geol. Soc., 2011, pp. 93–112.Google Scholar
  17. 17.
    Faure, G., Principles of Isotope Geology, New York: Wiley, 1986.Google Scholar
  18. 18.
    Font, E., Nédélec, A., Trindade, R.I.F., and Moreau, C., Fast or slow melting of the Marinoan snowball Earth? The cap dolostone record, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2010, vol. 295, nos. 1–2, pp. 215–225.CrossRefGoogle Scholar
  19. 19.
    Geologicheskaya karta SSSR m-ba 1 : 200 000. Seriya Bodaibinskaya. List O-50-XVII. Ob”yasnitel’naya zapiska (The 1 : 200 000 Geological Map of the USSR. Bodaibinskaya Series, Sheet O-50-XVII, Explanatory Note), Salop, L.I., Ed., Moscow, 1976. Google Scholar
  20. 20.
    Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (novaya seriya). List O-(50),51—Aldan. Ob”yasnitel’naya zapiska (The 1 : 1 000 000 State Geological Map of the Russian Federation. New Generation. Sheet O- (50), 51—Aldan. Explanatory note), St.-Petersburg: VSEGEI, 1998.Google Scholar
  21. 21.
    Gurary, G.Z., Garbuzenko, A.V., Nazarov, Kh., and Trubikhin, V.M., The geomagnetic field during the early Jaramillo Reversal, western Turkmenistan, Izv.,Phys. Solid Earth, 2002, vol. 38, no. 7, pp. 601–612.Google Scholar
  22. 22.
    Haltia-Hovi, E., Nowaczyk, N., Saarinen, T., and Plessen, B., Magnetic properties and environmental changes recorded in Lake Lehmilampi (Finland) during the Holocene, J. Paleolimnol., 2010, vol. 43, no. 1, pp. 1–13.CrossRefGoogle Scholar
  23. 23.
    Hanesch, M., Stanjek, H., and Petersen, N., Thermomagnetic measurements of soil iron minerals: the role of organic carbon, Geophys. J. Int., 2006, vol. 165, pp. 53–61.CrossRefGoogle Scholar
  24. 24.
    Hoffman, P.F., and Schrag, D.P., The Snowball Earth hypothesis: testing the limits of global change, Terra Nova, 2002, vol. 14, pp. 129–155.CrossRefGoogle Scholar
  25. 25.
    Khramov, A.N., Paleomagnitologiya (Paleomagnetology), Leningrad: Nedra, 1982.Google Scholar
  26. 26.
    King, R.F., The remanent magnetism of artificially deposited sediment, Mon. Not. R. Astron. Soc. Geophys. Suppl., 1955, no. 7, pp. 115–134.CrossRefGoogle Scholar
  27. 27.
    Kirscher, U., Winklhofer, M., Hackl, M., and Bachtadse, V., Detailed Jaramillo field reversals recorded in lake sediments from Armenia—Lower mantle influence on the magnetic field revisited, Earth Planet. Sci. Lett., 2018, vol. 484, pp.124–134.CrossRefGoogle Scholar
  28. 28.
    Kirschvink, J.L., Late Proterozoic low-latitude global glaciation: the Snowball Earth, in The Proterozoic Biosphere, Schopf, J.W. and Klein, C., Eds., Cambridge: Cambridge Univ., 1992, pp. 51–52.Google Scholar
  29. 29.
    Kirschvink, J.L., Ripperdan, R.L., and Evans, D.A., Evidence for a large-scale reorganization of Early Cambrian continental landmasses by inertial interchange true polar wander, Science, 1997, vol. 277, pp. 541–545.CrossRefGoogle Scholar
  30. 30.
    Kravchinsky, V.A., Konstantinov, K.M., and Cogne, J.P., Palaeomagnetic study of Vendian and Early Cambrian rocks of South Siberia and Central Mongolia: was the Siberian platform assembled at this time?, Precamb. Res., 2001, vol. 110, pp. 61–92.CrossRefGoogle Scholar
  31. 31.
    Kutzner, C., and Christensen, U.R., Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths, Geophys. J. Int., 2004, vol. 157, pp.1105–1118.CrossRefGoogle Scholar
  32. 32.
    Kuzmin, M.I., Yarmolyuk, V.V., and Kravchinsky, V.A., Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province, Earth Sci. Rev., 2010, vol. 102, pp. 29–59.CrossRefGoogle Scholar
  33. 33.
    Leonhardt, R., and Fabian, K., Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: iterative Bayesian inversion and independent verification, Earth Planet. Sci. Lett., 2007, vol. 253, pp.172–195.CrossRefGoogle Scholar
  34. 34.
    Leonov, M.V., and Rud’ko, S.V, Finding of the Ediacaran–Vendian fossils in the Far Taiga Deposits, Patom Highlands, Stratigr. Geol. Correl., 2012, vol. 20, no. 5, p. 497–500.CrossRefGoogle Scholar
  35. 35.
    Levashova, N.M., Bazhenov, M.L., Meert, J.G., Danukalov, K.N., Golovanova, I.V., Kuznetsov, N.B., and Fedorova, N.M., Paleomagnetism of upper Ediacaran clastics from the South Urals: implications to paleogeography of Baltica and the opening of the Iapetus Ocean, Gondwana Res., 2015, vol. 28, no. 1, pp. 191–208.CrossRefGoogle Scholar
  36. 36.
    Lowrie, W., Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties, Geophys. Res. Lett., 1990, vol. 17, no. 2, pp.159–162.CrossRefGoogle Scholar
  37. 37.
    Macdonald, F.A., Strauss, J.V., Sperling, E.A., Halverson, G.P., Narbonne, G.M., Johnston, D.T., Kunzmann, M., Schrag, D.P., and Higgins, J.A., The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada, Chem. Geol., 2013, vol. 362, pp. 250–272.CrossRefGoogle Scholar
  38. 38.
    Meert, J. G., and Van der Voo, R., Comment on ‘New palaeomagnetic result from Vendian red sediments in Cisbaikalia and the problem of the relationship of Siberia and Laurentia in the Vendian’ by Pisarevsky, S.A., Komissarova, R.A., and Khramov, A.N., Geophys. J. Int., 2001, vol. 146, pp. 867–870.CrossRefGoogle Scholar
  39. 39.
    Nesje, A., Matthews, J.A., Dahl, S.O., Berrisford, M.S., and Andersson, C., Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norvay, based on glaciolacustrine sediment records, The Holocene, 2001, vol. 11, no. 3, pp. 267–280.CrossRefGoogle Scholar
  40. 40.
    Ogg, J.G., Ogg, G.M., and Gradstein, F.M., A Concise Geologic Time Scale, Chapter 4: Cryogenian and Ediakaran, Amsterdam: Elsevier, 2016, pp. 29–39.CrossRefGoogle Scholar
  41. 41.
    Okada, M., Suganuma, Y., Haneda, Y., and Kazaoka, O., Paleomagnetic direction and paleointensity variations during the Matuyama-Brunhes polarity transition from a marine succession in the Chiba composite section of the Boso Peninsula, central Japan, Earth, Planets Space, 2017, vol. 69, Article no. 45.CrossRefGoogle Scholar
  42. 42.
    Olson, P., Hinnov, L.A., and Driscoll, P.E. Nonrandom geomagnetic reversal times and geodynamo evolution, Earth Planet. Sci. Lett., 2014, vol. 388, pp. 9–17.CrossRefGoogle Scholar
  43. 43.
    Park, J.K., Paleomagnetic evidence for low-latitude glaciation during deposition of the Neoproterozoic Rapitan Group, Mackenzie Mountains, N.W.T., Canada, Can. J. Earth Sci., 1997, vol. 34, pp. 34–49.CrossRefGoogle Scholar
  44. 44.
    Pavlov, V.E., Siberian paleomagnetic data and the problem of rigidity of the Northern Eurasian continent in the Post-Paleozoic, Izv.,Phys. Solid Earth, 2012, vol. 48, nos. 9–10, pp. 721–737.CrossRefGoogle Scholar
  45. 45.
    Pavlov, V.E., Gallet, Y., Shatsillo, A.V., and Vodovozov, V.Yu., Paleomagnetism of the Lower Cambrian from the Lower Lena river valley: constraints on the Apparent Polar Wander Path from the Siberian Platform and the anomalous behavior of the geomagnetic field at the beginning of the Phanerozoic, Izv.,Phys. Solid Earth, 2004, vol. 40, no. 2, pp. 114–133.Google Scholar
  46. 46.
    Pavlov, V., Bachtadse, V., and Mikhailov, V., New Middle Cambrian and Middle Ordovician palaeomagnetic data from Siberia: Llandelian magnetostratigraphy and relative rotation between the Aldan and Anabar-Angara blocks, Earth Planet. Sci. Lett., 2008, vol. 276, nos. 3–4, pp. 229–242.CrossRefGoogle Scholar
  47. 47.
    Pavlov, V.E., Pasenko, A.M., Shatsillo, A.V., Powerman, V.I., Shcherbakova, V.V., and Malyshev, S.V., Systematics of Early Cambrian paleomagnetic directions from the northern and eastern regions of the Siberian Platform and the problem of an anomalous geomagnetic field in the time vicinity of the Proterozoic–Phanerozoic boundary, Izv.,Phys. Solid Earth, 2018, vol. 54, no. 5, pp. 782–806.CrossRefGoogle Scholar
  48. 48.
    Pokrovskii, B.G., Melezhik, V.A., and Bujakaite, M.I., Carbon, oxygen, strontium, and sulfur isotopic compositions in Late Precambrian rocks of the Patom complex, Central Siberia: communication 1. Results, isotope stratigraphy, and dating problems, Lithol. Miner. Resour., 2006, vol. 41, no. 5, pp. 450–474.CrossRefGoogle Scholar
  49. 49.
    Pokrovsky, B.G., Chumakov, N.M., Melezhik, V.A., and Bujakaite, M.I., Geochemical properties of Neoproterozoic “Cap Dolomites” in the Patom paleobasin and problem of their genesis, Lithol. Miner. Resour., 2010, vol. 45, no. 6, pp. 577–592.CrossRefGoogle Scholar
  50. 50.
    Pokrovsky, B.G., and Bujakaite, M.I., Geochemistry of C, O, and Sr isotopes in the Neoproterozoic carbonates from the southwestern Patom Paleobasin, southern middle Siberia, Lithol. Miner. Resour., 2015, vol. 50, no. 2, pp. 144–169.CrossRefGoogle Scholar
  51. 51.
    Powerman, V., Shatsillo, A., Chumakov, N., Kapitonov, I., and Hourigan, J., Interaction between the Central Asian Orogenic Belt (CAOB) and the Siberian craton as recorded by detrital zircon suites from Transbaikalia, Precamb. Res., 2015, vol. 267, pp. 39–71.CrossRefGoogle Scholar
  52. 52.
    Prave, A.R., Condon, D.J., Hoffmann, K.H., Tapster, S., and Fallick, A.E., Duration and nature of the end-Cryogenian (Marinoan) glaciations, Geology, 2016, vol. 44, no. 8, pp. 631–634.CrossRefGoogle Scholar
  53. 53.
    Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic I., Dahl-Jensen D., Johnsen S.J., Fischer H., Gkinis V., Guillevic M., Hoek W.Z., Lowe J.J., Pedro J.B., et al., Stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the intimate event stratigraphy, Quat. Sci. Rev., 2014, vol. 106, pp. 14–28.CrossRefGoogle Scholar
  54. 54.
    Rud’ko, S.V., Petrov, P.Yu., Kuznetsov, A.B., Shatsillo, A.V., and Petrov, O.L., Refined δ13C trend of the Dal’nyaya Taiga Series of the Ura uplift (Vendian, southern part of Middle Siberia), Dokl. Earth. Sci., 2017, vol. 477, no. 2, pp. 1449–1453.CrossRefGoogle Scholar
  55. 55.
    Sansjofre, P., Ader, M., Trindade, R.I.F., Elie, M., Lyons, J., Cartigny, P., and Nogueira, A.C.R., A carbon isotope challenge to the snowball Earth, Nature, 2011, vol. 478, no. 7367, pp. 93–96.CrossRefGoogle Scholar
  56. 56.
    Schimmelmann, A., Lange, C.B., Schieber, J., Francus, P., Ojala, A.E., and Zolitschka, B., Varves in marine sediments: A review, Earth Sci. Rev., 2016, vol. 159, pp. 215–246.CrossRefGoogle Scholar
  57. 57.
    Sergeev, V.N., Knoll, A.H., and Vorob’eva, N.G., Ediacaran microfossils from the Ura. Formation, Baikal-Patom Uplift, Siberia: taxonomy and biostratigraphic significance, J. Paleontol., 2011, vol. 85, no. 5, pp. 987–1011.CrossRefGoogle Scholar
  58. 58.
    Shatsillo, A.V., Didenko, A.N., and Pavlov, V.E., Two competing paleomagnetic directions in the Late Vendian: new data for the SW region of the Siberian Platform, Russian J. Earth Sci., 2005, vol. 7, no. 4.CrossRefGoogle Scholar
  59. 59.
    Shatsillo, A.V., Didenko, A.N., and Pavlov, V.E., Paleomagnetism of Vendian deposits of the Southwestern Siberian Platform, Rus. J. Earth Sci., 2006, vol. 8, ES2003.  https://doi.org/10.2205/2005ES000182 CrossRefGoogle Scholar
  60. 60.
    Shatsillo, A.V., Kuznetsov, N.B., Pavlov, V.E., Fedonkin, M.A., Priyatkina, N.S., Serov, S.G., and Rud’ko, S.V., The first magnetostratigraphic data on the stratotype of the Lopata Formation, northeastern Yenisei Ridge: problems of its age and paleogeography of the Siberian Platform at the Proterozoic–Phanerozoic boundary, Dokl. Earth. Sci., 2015, vol. 465, no. 4, pp. 464–468.CrossRefGoogle Scholar
  61. 61.
    Steinberger, B., and Torsvik, T.H., Toward an explanation for the present and past locations of the poles, Geochem. Geophys. Geosyst., 2010, vol. 11, Article no. Q06W06.CrossRefGoogle Scholar
  62. 62.
    Tauxe, L., and Kent, D.V., Properties of a detrital remanence carried by haematite from study of modern river deposits and laboratory redeposition experiments, Geophys. J. R. Astron. Soc., 1984, vol. 76, pp. 543–561.CrossRefGoogle Scholar
  63. 63.
    Tauxe, L., Kodama, K.P., and Kent, D.V., Testing corrections for paleomagnetic inclination error in sedimentary rocks: a comparative approach, Phys. Earth Planet. Inter., 2008, vol. 169, nos. 1–4, pp. 152–165.CrossRefGoogle Scholar
  64. 64.
    Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P.V., van Hinsbergen, D.J.J., Domeier, M., Gaina, C., Tohver, E., Meert, J.G., McCausland, P.J.A., and Cocks, L.R.M., Phanerozoic polar wander, palaeogeography and dynamics, Earth Sci. Rev., 2012, vol. 114, nos. 3–4, pp. 325–368.CrossRefGoogle Scholar
  65. 65.
    Torsvik, T.H., Van der Voo, R., Doubrovine, P.V., Burke, K., Steinberger, B., Ashwal, L.D., Trønnes, R.G., Webb, S.J., and Bull, A.L., Deep mantle structure as a reference frame for movements in and on the Earth, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 24, pp. 8735–8740.CrossRefGoogle Scholar
  66. 66.
    Valet, J.-P., Fournier, A., Courtillot, V., and Herrero-Bervera, E., Dynamical similarity of geomagnetic field reversals, Nature, 2012, vol. 490, no.7418, pp. 89–93.CrossRefGoogle Scholar
  67. 67.
    Williams, G.E., Precambrian tidal and glacial clastic deposits: implications for Precambrian Earth–Moon dynamics and palaeoclimate, Sediment. Geol., 1998, vol. 120, nos. 1–4, pp. 55–74.CrossRefGoogle Scholar
  68. 68.
    Zolitschka, B., Francus, P., Ojala, A. E., and Schimmelmann, A., Varves in lake sediments—a review. Quat. Sci. Rev., 2015, vol. 117, pp. 1–41.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Shatsillo
    • 1
    Email author
  • S. V. Rud’ko
    • 2
    • 3
  • I. V. Latysheva
    • 2
    • 4
  • D. V. Rud’ko
    • 1
  • I. V. Fedyukin
    • 1
  • S. V. Malyshev
    • 5
  1. 1.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  2. 2.Geological Institute, Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Precambrian Geology and Geochronology, Russian Academy of SciencesSt.-PetersburgRussia
  4. 4.Faculty of Geology, Moscow State UniversityMoscowRussia
  5. 5.Institute of Earth Sciences, St.-Petersburg State UniversitySt.-PetersburgRussia

Personalised recommendations