Izvestiya, Physics of the Solid Earth

, Volume 55, Issue 6, pp 833–840 | Cite as

Could the Norilsk Region Dolerite Sills Have Recorded Geomagnetic Field Reversals? Results of Mathematical Modeling

  • D. V. MetelkinEmail author
  • A. V. Lavrenchuk
  • N. E. Mikhaltsov


The possibility of reconstructing geologic events by identifying patterns in variations of the geomagnetic field related to reversals is one of the fundamental applications of paleomagnetism. The most detailed records of reversal events, whose duration averages 1–10 thous. years, are known from studies of flood basalts of large igneous provinces. At the same time, there have been recent publications presenting facts interpreted as records of geomagnetic reversals in intrusive bodies. Specifically, such data were obtained for relatively thin dolerite sills of the Ergalakh complex in the Norilsk region of the Siberian trap province that supposedly recorded the Permian-Triassic “Ivakin-Syvermin” reversal. This interpretation is based on the hypothesis of a slowly cooling intrusion, in which its apical parts magnetized in the Ivakin epoch of reversed polarity and the central parts—after the reversal in the Syvermin epoch of normal polarity. In this paper, using results of mathematical modeling, we discuss the validity of such assumptions and the potential attractiveness of subvolcanic intrusions for studies of geomagnetic reversals. We demonstrate that the duration of their cooling, including the most probable interval of magnetization is several orders of magnitude less than the duration of reversal transitions, and that the most probable cause of the occurrence of both polarities is the self-reversal effect.


paleomagnetism geomagnetic reversals dolerite sill mathematic modeling cooling dynamics magnetization self-reversal 



This work was supported by the Russian Science Foundation (projects 14-37-00030 and 19-17-00091), the Russian Foundation for Basic Research (project 18-05-70035), the Ministry of Education and Science of the RF (projects no. 5.2324.2017/4.6 and 5.4786.2017/6.7), and by the program of fundamental research of IGM SB RAS and IPGG SB RAS.


The article was translated by the authors.


  1. 1.
    Annen, C., Blundy, J.D., Leuthold, J., and Sparks, R.S.J., Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism, Lithos, 2015, vol. 230, pp. 206–221.CrossRefGoogle Scholar
  2. 2.
    Campbell, I.H., Czamanske, G.K., Fedorenko, V.A., Hill, R.I., and Stepanov, V., Synchronism of the Siberian traps and the Permian-Triassic boundary, Science, 1992, vol. 258, pp. 1760–1763.CrossRefGoogle Scholar
  3. 3.
    Channell, J.E.T., Vázquez Riveiros, N., Gottschalk, J., Waelbroeck, C., and Skinner, L.C., Age and duration of Laschamp and Iceland Basin geomagnetic excursions in the South Atlantic Ocean, Quat. Sci. Rev., 2017, vol. 167, pp. 1–13.CrossRefGoogle Scholar
  4. 4.
    Coe, R.S., Jarboe, N.A., Le Goff, M., and Petersen, N., Demise of the rapid-field-change hypothesis at Steens Mountain: the crucial role of continuous thermal demagnetization, Earth Planet. Sci. Lett., 2014, vol. 400, pp. 302–312.CrossRefGoogle Scholar
  5. 5.
    Cox, A., Plate Tectonics and Geomagnetic Reversals, San Francisco: Freeman, 1973.Google Scholar
  6. 6.
    Dalrymple, G.B., Czamanske, G.K., Lanphere, M.A., Stepanov, V., and Fedrenko, V., 40Ar/39Ar ages from samples from Noril’sk–Talnakh ore bearing intrusions and the Siberian flood basalts, Siberia, Eos Trans. Am. Geophys. Un., 1991, vol. 72, p. 570.Google Scholar
  7. 7.
    Didenko, A.N., The time relations of the processes in the core and the lithosphere, Rus. Zh. Nauk Zemle, 1998, vol. 1, no. 3, pp. 187–198.Google Scholar
  8. 8.
    Didenko, A.N., Possible causes of quasiperiodic variations in geomagnetic reversal frequency and 87Sr/86Sr ratios in marine carbonates through the Phanerozoic, Russ. Geol. Geophys., 2011, vol. 52, no. 12, pp. 1530–1538.CrossRefGoogle Scholar
  9. 9.
    Dobretsov, N.L., Global geodynamic evolution of the Earth and global geodynamic models, Russ. Geol. Geophys., 2010, vol. 51, no. 6, pp. 592–610.CrossRefGoogle Scholar
  10. 10.
    Dobretsov, N.L., Periodicity and driving forces of volcanism, Russ. Geol. Geophys., 2015, vol. 56, no. 12, pp. 1663–1670.CrossRefGoogle Scholar
  11. 11.
    Ferk, A., and Leonhardt, R., The Laschamp geomagnetic field excursion recorded in Icelandic lavas, Phys. Earth Plane. Inter., 2009, vol. 177, pp. 19–30.CrossRefGoogle Scholar
  12. 12.
    Fetisova, A.M., Veselovskii, R.V., Latyshev, A.V., Pavlov, V.E., and Rad’ko, V.A., Magnetic stratigraphy of the Permian-Triassic traps in the Kotui River valley (Siberian Platform): new paleomagnetic data, Stratigr. Geol. Correl., 2014, vol. 22, no. 4, pp. 377–390.CrossRefGoogle Scholar
  13. 13.
    Gapeev, A.K. and Gribov, S.K., Partial self-reversal of the thermoremanent magnetization created by titanomagnetites subjected to multiphase oxidation, Izv.,Phys. Solid Earth, 2002, vol. 38, no. 9, pp. 713–722.Google Scholar
  14. 14.
    Gapeev, A.K. and Gribov, S.K., Magnetic properties of intrusive traps of the Siberian Platform: evidence for a self-reversal of the natural remanent magnetization, Izv.,Phys. Solid Earth, 2008, vol. 44, no. 10, pp. 822–838.CrossRefGoogle Scholar
  15. 15.
    Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., The Geological Time Scale, Amsterdam: Elsevier, 2012.Google Scholar
  16. 16.
    Gurevitch, E.L., Heunemann, C., Rad’ko, V., Westphal, M., Bachtadse, V., Pozzi, J.P., and Feinberg, H., Palaeomagnetism and magnetostratigraphy of the Permian–Triassic northwest central Siberian Trap Basalts, Tectonophysics, 2004, vol. 379, pp. 211–226.CrossRefGoogle Scholar
  17. 17.
    Gutiérrez, F., and Parada, M.A., Numerical modeling of time-dependent fluid dynamics and differentiation of a shallow basaltic magma chamber, J. Petrol., 2010, vol. 51, no. 3, pp. 731–762. CrossRefGoogle Scholar
  18. 18.
    Herrero-Bervera, E., and Valet, J.-P., Paleosecular variation during sequential geomagnetic reversals from Hawaii, Earth Planet. Sci. Lett., 1999, vol. 171, pp. 139–148.CrossRefGoogle Scholar
  19. 19.
    Heunemann, C., Krasa, D., Soffel, H., Gurevitch, E., and Bachtadse, V., Directions and intensities of the Earth’s magnetic field during a reversal: results from the Permo-Triassic Siberian trap basalts, Russia, Earth Planet. Sci. Lett., 2004, vol. 218, pp. 197–213.CrossRefGoogle Scholar
  20. 20.
    Huppert, H.E., and Sparks, R.S.J., The generation of granitic magmas by intrusion of basalt into continental crust, J. Petrol, 1988, vol. 29, pp. 599–624. CrossRefGoogle Scholar
  21. 21.
    Jarboe, N.A., Coe, R.S., and Glen, J.M.G., Evidence from lava flows for complex polarity transitions: the new composite Steens Mountain reversal record, Geophys. J. Int., 2011, vol. 186, pp. 580–602.CrossRefGoogle Scholar
  22. 22.
    Kamo, S.L., Czamanske, G.K., Amelin, Yu., Fedorenko, V.A., Davis, D.W., and Trofimov, V.R., Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma, Earth Planet. Sci. Lett., 2003, vol. 214, pp. 75–91.CrossRefGoogle Scholar
  23. 23.
    Krása, D., Shcherbakov, V.P., Kunzmann, T., and Peter-sen, N., Self-reversal of remanent magnetisation in basalts due to partially oxidized titanomagnetites, Geophys. J. Int, 2005, vol. 162, no. 1, pp. 115–136.CrossRefGoogle Scholar
  24. 24.
    Latyshev, A.V., Veselovskiy, R.V., Ivanov, A.V., Fetisova, A.M., and Pavlov, V.E., Short intense bursts in magmatic activity in the south of Siberian Platform (Angara-Taseeva Depression): the paleomagnetic evidence, Izv.,Phys. Solid Earth, 2013, vol. 49, no. 6, pp. 823–835.CrossRefGoogle Scholar
  25. 25.
    Latyshev, A.V., Ulyakhina, P.S., and Krivolutskaya, N.A., Signs of the record of geomagnetic reversal in Permian–Triassic trap intrusions of the Ergalakhsky complex, Norilsk region. Izv.,Phys. Solid Earth, 2019, vol. 55, no. 2, pp. 270–286.CrossRefGoogle Scholar
  26. 26.
    Lind, E., Kropotov, S., Czamanske, G., Gromme, S., and Fedorenko, V., Paleomagnetism of the Siberian Flood Basalts of the Noril’sk Area: a constraint on eruption duration, Int. Geol. Rev., 1994, vol. 36, no. 12, pp. 1139–1150.CrossRefGoogle Scholar
  27. 27.
    McDougall, I., The present status of the geomagnetic polarity time scale, in The Earth: Its Origin, Structure and Evolution, McElhinny, M.W., Ed., London: Academic, 1979, pp. 543–566.Google Scholar
  28. 28.
    Merrill, R.T., and McFadden, P.L., Geomagnetic polarity transitions, Rev. Geophys., 1999, vol. 37, pp. 201–226.CrossRefGoogle Scholar
  29. 29.
    Mikhaltsov, N.E., Kazansky, A.Yu., Ryabov, V.V., Shevko, A.Ya., Kuprish, O.V., and Bragin, V.Yu., Paleomagnetism of trap basalts in the northwestern Siberian craton, from core data, Russ. Geol. Geophys., 2012, vol. 53, no. 11, pp. 1228–1242.CrossRefGoogle Scholar
  30. 30.
    Morris, A., A palaeomagnetic and rock magnetic glossary, Tectonophysics, 2003, vol. 377, pp. 211–228.CrossRefGoogle Scholar
  31. 31.
    Nagata, T., Rock Magnetism, Tokyo: Maruzen, 1961.Google Scholar
  32. 32.
    Narteau, C., Le Mouël, J.-L., and Valet, J.-P., The oscillatory nature of the geomagnetic field during reversals, Earth Planet. Sci. Lett., 2007, vol. 262, pp. 66–76.CrossRefGoogle Scholar
  33. 33.
    Nikolaev, G.S., Ariskin, A.A., and Barmina, G.S., SPINMELT-2.0: Simulation of spinel–melt equilibrium in basaltic systems under pressures up to 15 kbar: I. Model formulation, calibration, and tests, Geochem. Int., 2018, vol. 56, no. 1, pp. 24–45.CrossRefGoogle Scholar
  34. 34.
    Olson, P.L., Glatzmaier, G.A., and Coe, R.S., Complex polarity reversals in a geodynamo model, Earth Planet. Sci. Lett., 2011, vol. 304, pp. 168–179.CrossRefGoogle Scholar
  35. 35.
    Opdyke, N.D., and Channel, J.E.T., Magnetic Stratigraphy, New York: Academic, 1996.Google Scholar
  36. 36.
    Pavlov, V.E., Fluteau, F., Veselovskiy, R.V., Fetisova, A.M., and Latyshev, A.V., Secular geomagnetic variations and volcanic pulses in the Permian–Triassic traps of the Norilsk and Maimecha–Kotui provinces, Izv.,Phys. Solid Earth, 2011, vol. 47, no. 5, pp. 402–417.CrossRefGoogle Scholar
  37. 37.
    Pecherskii, D.M., Paleomagnitologiya, petromagnitologiya i geologiya. Slovar’-spravochnik dlya sosedey po spetsial’nosti (Paleomagnetology, Rock Magnetology, and Geology: A Glossary for Neighbors in Speciality). Scholar
  38. 38.
    Reichow, M.K., Saunders, A.D., White, R.V., Pringle, M.S., Al’Mukhamedov, A.L., Medvedev, A.I., and Kirda, N.P., 40Ar/39Ar dates from the West Siberia basin: Siberia flood basalt province doubled, Science, 2002, vol. 296, pp. 1846–1849.CrossRefGoogle Scholar
  39. 39.
    Reichow, M.K., Pringle, M.S., Al’Mukhamedov, A.I., Allen, M.B., Andreichev, V.L., Buslov, M.M., Davies, C.E., Fedoseev, G.S., Fitton, J.G., Inger, S., Medvedev, A.Ya., Mitchell, C., Puchkov, V.N., Safonova, I.Yu., Scott, R.A. et al., The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis, Earth Planet. Sci. Lett., 2009, vol. 277, pp. 9–20.CrossRefGoogle Scholar
  40. 40.
    Renne, P.R., and Basu, A.R., Rapid eruption of the Siberian traps flood basalts at Permo-Triassic Boundary, Science, 1991, vol. 253, pp. 176–179.CrossRefGoogle Scholar
  41. 41.
    Ryabov, V.V., Shevko, A.Ya., and Gora, M.P., Magmaticheskie obrazovaniya Noril’skogo raiona. T. 1. Petrologiya trappov (Magmatic Formations of the Norilsk Region, vol. 1: Petrology of Traps.), Novosibirsk: Nonparel’, 2001Google Scholar
  42. 42.
    Schön, J.H., Physical Properties of Rocks: Fundamentals and Principles of Petrophysics, Amsterdam: Pergamon, 1998.Google Scholar
  43. 43.
    Shcherbakov, V.P., Latyshev, A.V., Veselovskii, R.V., and Tsel’movich, V.A., Origin of false components of NRM during conventional stepwise thermal demagnetization, Russ. Geol. Geophys., 2017, vol. 58, no. 9, pp. 1118–1128.CrossRefGoogle Scholar
  44. 44.
    Skeel, R.D., and Berzins, M., A method for the spatial discretization of parabolic equations in one space variable, SIAM J. Sci. Stat. Comput., 1990, vol. 11, no. 1, pp. 1–32.CrossRefGoogle Scholar
  45. 45.
    Smith, P.M., and Asimow, P.D., Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models, Geochem. Geophys. Geosyst., 2005, vol. 6, Q02004.CrossRefGoogle Scholar
  46. 46.
    Valet, J.-P., Fournier, A., Courtillot, V., and Herrero-Bervera, E., Dynamical similarity of geomagnetic field reversals, Nature, 2012, vol. 490, pp. 89–93.CrossRefGoogle Scholar
  47. 47.
    Veselovsky, R.V., Gallet, Y, and Pavlov, V.E., Paleomagnetism of traps in the Podkamennaya Tunguska and Kotui river valleys: implications for the Post-Paleozoic relative movements of the Siberian and East European Platforms, Izv.,Phys. Solid Earth, 2003, vol. 39, no. 10, pp. 856–862.Google Scholar
  48. 48.
    Veselovskiy, R.V., Konstantinov, K.M., Latyshev, A.V., and Fetisova, A.M., Paleomagnetism of the trap intrusive bodies in Arctic Siberia: geological and methodical implications, Izv.,Phys. Solid Earth, 2012, vol. 48, nos. 9–10, pp. 738–750.CrossRefGoogle Scholar
  49. 49.
    Wicht, J., and Meduri, D.G., A Gaussian model for simulated geomagnetic field reversals. Phys. Earth Planet. Inter., 2016, vol. 259, pp. 45–60.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. V. Metelkin
    • 1
    • 2
    Email author
  • A. V. Lavrenchuk
    • 1
    • 3
  • N. E. Mikhaltsov
    • 1
    • 2
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  3. 3.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations