Izvestiya, Physics of the Solid Earth

, Volume 55, Issue 6, pp 821–832 | Cite as

On Transformation of Energy of Geomagnetic Disturbances

  • V. V. Gorokhov
  • V. I. Karelin
  • V. D. SelemirEmail author

Abstract—A mechanism responsible for the transformation of energy of geomagnetic disturbances into the energy of chemically active products is proposed. According to this mechanism, this transformation is implemented by electrolysis at the interfaces between the media with a different type of conduction under the passing of telluric currents induced by the variations of the geomagnetic field. The efficiency of the transformation of disturbance energy into the energy of electrolysis products is estimated. The energy flux absorbed by the Earth under geomagnetic disturbances is estimated. It is shown that the energy transferred to the chemical energy of the products of electrolysis is comparable with seismic energy. It is suggested that chemically active gaseous products of electrolysis affect seismic activity. It is also hypothesized that the electrolysis under the action of telluric currents induced by the variations of the geomagnetic field is one of the sources of outgassing of the Earth.


geomagnetic perturbations telluric currents electrolysis chemical energy of electrolysis products seismicity 



  1. 1.
    Adushkin, V.V., Ryabova, S.A., Spivak, A.A., and Kharlamov, V.A., On the probable influence of geomagnetic variations on background seismicity, in Triggernye effekty v geosistemakh (Trigger Effects in Geosystems), Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow: GEOS, 2013.Google Scholar
  2. 2.
    Afanas’eva, V.I. and Bychkova, A.K., Katalog semeistva geomagnitnykh bur’ perioda 1965–1975 gg. i statisticheskie zakonomernosti geomagnitnoi aktivnosti (Catalog of Geomagnetic Storms Family of 1965–1975 and Statistical Regularities of Geomagnetic Activity), Moscow: IZMIRAN, 1977.Google Scholar
  3. 3.
    Akasofu, S.I. and Chapman, S., Solar-Terrestrial Physics, Part 2, London: Oxford Univ. Press, 1972.Google Scholar
  4. 4.
    Aleksandrov, M.S., Bakleneva, Z.M., Gladshtein, N.D., Ozerov, V.P., Potapov, A.V., and Remizov, L.T., Fluktuatsii elektromagnitnogo polya Zemli v diapazone SNCh (ELF Fluctuations of the Earth’s Electromagnetic Field), Moscow: Nauka, 1972.Google Scholar
  5. 5.
    Bogorodskii, V.V., Gusev, A.V., Doronin, Yu.P., Kuznetsova, L.N., and Shifrin, K.S., Fizika okeana (Ocean Physics), Leningrad: Gidrometeoizdat, 1978.Google Scholar
  6. 6.
    Filippov, Yu.V. and Popovich, M.P., Fizicheskaya khimiya (Physical Chemistry), Moscow: MGU, 1980.Google Scholar
  7. 7.
    Gilat, A., and Vol, A., Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes, Geosci. Frontiers, 2012, vol. 3, no. 6, pp. 1–11.CrossRefGoogle Scholar
  8. 8.
    Hargreaves, J.K., The Upper Atmosphere and Solar Terrestrial Relations: An Introduction to the Aerospace Environment, New York: Van Nostrand, 1982.Google Scholar
  9. 9.
    Kappenman, J., Geomagnetic storms and their impacts on the U.S. power grid, Report Metatech Corporation Meta-R-319, California: Goleta, 2010.Google Scholar
  10. 10.
    Kovtun, A.A., Electric conductivity of the Earth, Soros. Obraz. Zh., 1997, no. 10, pp. 111–117.Google Scholar
  11. 11.
    Lyatskii, V.B., Tokovye sistemy magnitosferno-ionosfernykh vozmushchenii (Current Systems of Magnetosphere–Ionosphere Disturbances), Leningrad: Nauka, 1978.Google Scholar
  12. 12.
    McKay, A.J., Geoelectric fields and geomagnetically induced currents in the United Kingdom, Ph.D. Thesis, Edinburgh: University of Edinburgh, 2003.Google Scholar
  13. 13.
    Natyaganov, V.L. and Nechaev, A.M., Probable mechanisms of interdependence of seismic and volcanic activity, Vestn. KRAUNTs.Nauki Zemle, 2015, vol. 25, no. 1, pp. 66–71.Google Scholar
  14. 14.
    Nikol’skii, V.V., Teoriya elektromagnitnogo polya (Electromagnetic Field Theory), Moscow: Vysshaya shkola, 1961.Google Scholar
  15. 15.
    Novikov, G.I., Osnovy obshchei khimii (Basics of General Chemistry), Moscow: Vysshaya shkola, 1988.Google Scholar
  16. 16.
    One-Dimensional Earth Resistivity Models for Selected Areas of Continental United States and Alaska, Technical Update 1026430, Palo Alto: Electric Power Research Institute, 2012.Google Scholar
  17. 17.
    Rotanova, N.M. and Pushkov, A.N., Glubinnaya elektroprovodnost’ Zemli (Deep Electrical Conductivity of the Earth), Moscow: Nauka, 1982.Google Scholar
  18. 18.
    Sobolev, G.A. and Demin, V.M., Mekhanoelektricheskie yavleniya v Zemle (Mechanoelectric Phenomena in the Earth), Moscow: Nauka, 1980.Google Scholar
  19. 19.
    Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Earthquake Physics and Precursors), Moscow: Nauka, 2003.Google Scholar
  20. 20.
    Sobolev, G.A., Zakrzhevskaya, N.L., and Kharin, E.P., On the relation between seismicity and magnetic storms, Izv.,Phys. Solid Earth, 2001, vol. 37, no. 11, pp. 917–927.Google Scholar
  21. 21.
    Sycheva, N.A., Bogomolov, L.M., and Sychev, V.N., On geoeffective solar flares and variations of the seismic noise level, Izv.,Phys. Solid Earth, 2011, vol. 47, no. 3, pp. 207–222.CrossRefGoogle Scholar
  22. 22.
    Trukhin, V.I., Pokazeev, K.V., and Kunitsyn, V.E., Obshchaya i ekologicheskaya geofizika (General and Environmental Geophysics), Moscow: Fizmatlit, 2005.Google Scholar
  23. 23.
    Utada, H., Koyama, T., Shimizu, H., and Chave, A.D., A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region, Geophys. Res. Lett., 2003, vol. 30, no. 4, p. 1194. CrossRefGoogle Scholar
  24. 24.
    Voitov, G.I., Chemism and scale of the recent flow of natural gases in different geostructural zones of the Earth, Zh. Vses. Khim. I. Mendeleeva, 1986, vol. 31, no. 5, pp. 533–539.Google Scholar
  25. 25.
    Yanovskii, B.M., Zemnoi magnetizm (Earth’s Magnetism), Leningrad: LGU, 1978.Google Scholar
  26. 26.
    Zabolotnaya, N.A., Indeksy geomagnitnoi aktivnosti (Indices of Geomagnetic Activity), Moscow: Gidrometeoizdat, 2004.Google Scholar
  27. 27.
    Zakrzhevskaya, N.A. and Sobolev, G.A., On the seismicity effect of magnetic storms, Izv.,Phys. Solid Earth, 2002, vol. 38, no. 4, pp. 249–261.Google Scholar
  28. 28.
    Zakrzhevskaya, N.A. and Sobolev, G.A., The effects of the sudden commencement magnetic storms on seismicity in different regions, Vulkanol. Seismol., 2004, no. 3, pp. 63–75.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Gorokhov
    • 1
  • V. I. Karelin
    • 1
  • V. D. Selemir
    • 1
    Email author
  1. 1.The Russian Federal Nuclear Center—All-Russian Research Institute of Experimental PhysicsSarovRussia

Personalised recommendations