Advertisement

Izvestiya, Physics of the Solid Earth

, Volume 55, Issue 6, pp 907–926 | Cite as

Parameterization of A Priori Geological Knowledge in Seismic Inversion

  • K. A. EpovEmail author
Article

Abstract—An approach to parameterization of prior geological knowledge concerning the changes in depositional environment in space and geological time for their quantitative use in the workflow of seismic inversion is presented. The idea is to describe the observed or expected facies diversity in terms of a few statistically independent factors (generalized geological variables). The topology and metrics of the model are determined by the set of basic depositional environments and the statistics of facies transitions. The introduced parameters make it possible to estimate the occurrence probability of different facies at each model point. The proposed technique can be applied for regions with various degree of detail of the existing geological knowledge and amount of available well logging data.

Keywords:

seismic inversion depositional environments facies conditional probability a priori knowledge Bayes’ theorem 

Notes

ACKNOWLEDGMENTS

I am deeply grateful to Doctor of Science in geology and mineralogy, Professor of the Faculty of Geology of the Lomonosov Moscow State University Valentina Alekseevna Zhemchugova. The main ideas reflected in this paper resulted from our long-standing collaboration and fruitful discussions during the work on the real well and seismic data integrated interpretation projects on various oil and gas fields.

I am also grateful to Doctor of Science in physics and mathematics, corresponding member of the Russian Academy of Sciences Sergei Andreevich Tikhotskii for his valuable comments during the discussions and preparation of this publication.

REFERENCES

  1. 1.
    Ajdukiewicz, J.M. and Lander, R.H., Sandstone reservoir quality prediction: the state of the art, AAPG Bull., 2010, vol. 94, no. 8, pp. 1083–1091.CrossRefGoogle Scholar
  2. 2.
    Amari, Sh. and Nagaoka, H., Methods of Information Geometry, Vol. 191 of Transl. Math. Monogr., Providence: Am. Math. Soc. and Oxford Univ., 2000.Google Scholar
  3. 3.
    Avseth, P., Mukerji, T., and Mavko, G., Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk, Cambridge: Cambridge Univ. Press, 2005.CrossRefGoogle Scholar
  4. 4.
    Ball, V., Tenorio, L., Schiott, C., Blangy, J.P., and Thomas, M., Uncertainty in inverted elastic properties resulting from uncertainty in the low-frequency model, The Leading Edge, 2015, vol. 34, no. 9, pp. 1028–1030, 1032, 1034–1035.CrossRefGoogle Scholar
  5. 5.
    Bhattacharyya, A., On a measure of divergence between two statistical populations defined by their probability distribution, Bull. Calcutta Math. Soc., 1943, vol. 35, pp. 99–110.Google Scholar
  6. 6.
    Bohacs, K. and Suter, J., Sequence stratigraphic distribution of coaly rocks: fundamental controls and paralic examples, AAPG Bull., 1997, vol. 81, no. 10, pp. 1612–1639.Google Scholar
  7. 7.
    Borg, I. and Groenen, P.J.F., Modern Multidimensional Scaling: Theory and Applications, New York: Springer, 2005.Google Scholar
  8. 8.
    Bosch, M., Mukerji, T., and Gonzalez, E.F., Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review, Geophysics, 2010, vol. 75, no. 5.CrossRefGoogle Scholar
  9. 9.
    Buland, A., Kolbjørnsen, O., Hauge, R., Skjœveland, O., and Duffaut, K., Bayesian lithology and fluid prediction from seismic prestack data, Geophysics, 2008, vol. 73, no. 3, pp. C13–C21.CrossRefGoogle Scholar
  10. 10.
    Carroll, A.R. and Bohacs, K.M., Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls, Geology, 1999, vol. 27, no. 2, pp. 99–102.CrossRefGoogle Scholar
  11. 11.
    Catuneanu, O., Galloway, W.E., Kendall, C.G.S. t.C., Miall, A.D., Posamentier, H.W., Strasser, A., and Tucker, M.E., Sequence stratigraphy: methodology and nomenclature, Newslett. Stratigr., 2011, vol. 44, no. 3, pp. 173–245.CrossRefGoogle Scholar
  12. 12.
    Chentsov, N.N., On the systematic theory of exponential families of probability distributions, Teor. Veroyat. Prim., 1966, vol. 11, no. 3, pp. 483–494.Google Scholar
  13. 13.
    Chernoff, H., A measure of asymptotic efficiency for test of a hypothesis based on the sum of observations, Ann. Math. Stat., 1952, vol. 23, no. 4, pp. 493–507.CrossRefGoogle Scholar
  14. 14.
    Colombera, L., Mountney, N.P., and Mccaffrey, W.D., A quantitative approach to fluvial facies models: methods and example results, Sedimentology, 2013, vol. 60, pp. 1526–1558.Google Scholar
  15. 15.
    Davison, M., Multidimensional Scaling, New York: Wiley, 1983.Google Scholar
  16. 16.
    Dubrule, O., Geostatistics for seismic data integration in Earth models: 2003 Distinguished Instructor Short Course, Distinguished Instructor Series, no. 6, Tulsa: Soc. Explor. Geophys., 2003.Google Scholar
  17. 17.
    Duijndam, A.J.W., Bayesian estimation in seismic inversion. Part I: Principles, Geophys. Prospect., 1998, vol. 36, no. 8, pp. 878–898.CrossRefGoogle Scholar
  18. 18.
    Duijndam, A.J.W., Bayesian estimation in seismic inversion. Part II: Uncertainty analysis, Geophys. Prospect., 1998, vol. 36, no. 8, pp. 899–918.CrossRefGoogle Scholar
  19. 19.
    Dvorkin, J., Gutierrez, M.A., and Grana, D., Seismic Reflections of Rock Properties, Cambridge: Cambridge Univ. Press, 2014.CrossRefGoogle Scholar
  20. 20.
    Eidsvik, J., Mukerji, T., and Switzer, P., Modeling lithofacies alternations from well logs using Hierarchical Markov Chains, SEG Technical Program Expanded Abstracts, 2002, vol. 21, pp. 2463–2466.Google Scholar
  21. 21.
    Eidsvik, J., Avseth, P., More, H., Mukerji, T., and Mavko, G., Stochastic reservoir characterization using prestack seismic data, Geophysics, 2004, vol. 69, no. 4, pp. 978–993.CrossRefGoogle Scholar
  22. 22.
    Gogonenkov, G.N., Izuchenie detal’nogo stroeniya osadochnykh tolshch seismorazvedkoi (Seismic Prospecting of the Detailed Structure of Sedimentary Sections), Moscow: Nedra, 1987.Google Scholar
  23. 23.
    González, E.F., Mukerji, T., and Mavko, G., Seismic inversion combining rock physics and multiple-point geostatistics, Geophysics, 2008, vol. 73, no. 1, pp. R11–R21.CrossRefGoogle Scholar
  24. 24.
    González, E.F., Gesbert, S. and Hofmann, R., Adding geologic prior knowledge to Bayesian lithofluid facies estimation from seismic data, Interpretation, 2016, vol. 4, no. 3, pp. 1A–Y1.CrossRefGoogle Scholar
  25. 25.
    Grana, D., Bayesian inversion methods for seismic reservoir characterization and time-lapse studies, Ph. D. Dissertation, Stanford University, 2013.Google Scholar
  26. 26.
    Grana, D., Pirrone, M., and Mukerji, T., Quantitative log interpretation and uncertainty propagation of petrophysical properties and facies classification from rock-physics modeling and formation evaluation analysis, Geophysics, 2012, vol. 77, no. 3, pp. WA45–WA63.CrossRefGoogle Scholar
  27. 27.
    Gunning, J. and Glinsky, M., Delivery: an open-source model-based Bayesian seismic inversion program, Comput. Geosci., 2004, vol. 30, pp. 619–636.CrossRefGoogle Scholar
  28. 28.
    Gunning, J.S., Kemper, M., and Pelham, A., Obstacles, challenges and strategies for facies estimation in AVO seismic inversion, Extended Abstract of the 76th EAGE Conf. and Exhibition, 2014.Google Scholar
  29. 29.
    Haas, A. and Dubrule, O., Geostatistical inversion—a sequential method of stochastic reservoir modelling constrained by seismic data, First Break, 1994, vol. 12, pp. 561–569.CrossRefGoogle Scholar
  30. 30.
    Harper, C.W.J., Facies model revisited: an examination of quantitative methods, Geosci. Can., 1984, vol. 11, no. 4, pp. 203–207.Google Scholar
  31. 31.
    Kabanikhin, S.I. and Isakov, K.T., Obratnye i nekorrektnye zadachi dlya giperbolicheskikh uravnenii (Inverse and Ill-Posed Problems for Hyperbolic Equations), Almaty: Kazakh. nats. pedagog. univ. im. Abaya, 2007.Google Scholar
  32. 32.
    Kemper, M.A.C. and Gunning, J., Joint impedance and facies inversion—seismic inversion redefined, First Break, 2014, vol. 32, no. 9, pp. 89–95.Google Scholar
  33. 33.
    Krasheninnikov, G.F., Uchenie o fatsiyakh. Uchebnoe posobie (Theory of Facies: A Tutorial), Moscow: Vysshaya shkola, 1971.Google Scholar
  34. 34.
    Larsen, A.L., Ulvmoen, M., Omre, H., and Buland, A., Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model, Geophysics, 2006, vol. 71, no. 5, pp. R69–R78.CrossRefGoogle Scholar
  35. 35.
    Mahalanobis, P.C., On the generalized distance in statistics, Proc. Natl. Inst. Sci. India, 1936, vol. 2, no. 1, pp. 49–55.Google Scholar
  36. 36.
    Mavko, G., Mukerji, T., and Dvorkin, J., The Rock Physics Handbook, New York: Cambridge Univ. Press, 2009.CrossRefGoogle Scholar
  37. 37.
    Miall, A.D., Markov chain analysis applied to an ancient alluvial plain succession, Sedimentology, 1973, no. 20, pp. 347–364.CrossRefGoogle Scholar
  38. 38.
    Morad, S., Al-Ramadan, K., Ketzler, J.M., and De Ros, L.F., The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy, AAPG Bull., 2010, vol. 94, no. 8, pp. 1267–1309.CrossRefGoogle Scholar
  39. 39.
    Morozova, E.A. and Chentsov, N.N., Natural geometry on families of probability laws, Itogi Nauki Tekhn. Sovrem. Probl. Matem. Fundam. Napravleniya. Moscow: VINITI, 1991, pp. 133–265.Google Scholar
  40. 40.
    Mukerji, T., Avseth, P., Mavko, G., Takahashi, I., and Gonzalez, E.F., Statistical rock physics: combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization, The Leading Edge, 2001, vol. 20, pp. 313–319.CrossRefGoogle Scholar
  41. 41.
    Myasoedov, D.N., The influence of the interpolation model on the result of geostatistical inversion, Geofizika, 2015, no. 6, pp. 20–28.Google Scholar
  42. 42.
    Nielsen, F., Chernoff information of exponential families. arXiv:1102.2684v1, 2011.Google Scholar
  43. 43.
    Nielsen, F., An information-geometric characterization of Chernoff information, IEEE Signal Process. Lett., 2013, vol. 20, no. 3, pp. 269–272.CrossRefGoogle Scholar
  44. 44.
    Nielsen, F. and Garcia, V., Statistical exponential families: a digest with flash cards. arXiv:0911.4863v2, 2011.Google Scholar
  45. 45.
    Nurgalieva, N.G., Vinokurov, V.M., and Nurgaliev, D.K., The Golovkinsky strata formation model, basic facies law and sequence stratigraphy concept: historical sources and relations, Russ. J. Earth Sci., 2007, vol. 9, ES 1003.Google Scholar
  46. 46.
    Odesskii, I.A., Spatio-temporal meaning of the rock-layer boundaries, Zap. Gorn. Inst., 1992, vol. 134, pp. 116–123.Google Scholar
  47. 47.
    Rao, C.R., Differential metrics in probability spaces, Chapter 5 in Differential Geometry in Statistical Inference by Amari, S., Barndorff-Nielsen, O., Kass, R., Lauritzen, S., and Rao, C.R., IMS Lecture Notes—Monograph Series, vol. 10, Hayward: Inst. Math. Stat., 1987, pp. 217–240.Google Scholar
  48. 48.
    Reading, H.G., Clastic facies models, a personal perspective, Bull. Geol. Soc. Denmark, 2001, vol. 48, pp. 101–115.Google Scholar
  49. 49.
    Riegl, B. and Purkis, S.J., Markov models for linking environments and facies in space and time (recent Arabian Gulf, Miocene Paratethys), in Perspectives in Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg (Special Publication Number 41 of the International Association of Sedimentologists), Swart, P.K., Eberli, G.P., and McKenzie, J.A., Eds., Chicester: Wiley, 2009, pp. 337–360.CrossRefGoogle Scholar
  50. 50.
    Rimstad, K. and Omre, H., Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction, Geophysics, 2010, vol. 75, no. 4, pp. R93–R108.CrossRefGoogle Scholar
  51. 51.
    Russell, B.H., Introduction to Seismic Inversion Methods, Course Notes Series, no. 2, Tulsa: Society of Exploration Geophysicists, 1988.Google Scholar
  52. 52.
    Sams, M. and Saussus, D., Practical implications of low frequency model selection on quantitative interpretation results, SEG Technical Program Expanded Abstracts, 2013, pp. 3118–3122.Google Scholar
  53. 53.
    Saussus, D. and Sams, M., Facies as the key to using seismic inversion for modelling reservoir properties, First Break, 2012, vol. 30, no. 7, pp. 45–52.CrossRefGoogle Scholar
  54. 54.
    Scales, J.A. and Tenorio, L., Prior information and uncertainty in inverse problems, Geophysics, 2001, vol. 66, no. 2, pp. 389–397.CrossRefGoogle Scholar
  55. 55.
    Sen, M.K., Seismic Inversion, Dallas: Soc. Petrol. Engineers, 2006.Google Scholar
  56. 56.
    Sen, M.K. and Stoffa, P.L., Nonlinear one-dimensional seismic waveform inversion using simulated annealing, Geophysics, 1991, vol. 56, no. 10, pp. 1624–1638.CrossRefGoogle Scholar
  57. 57.
    Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation, Philadelphia: Soc. Ind. Appl. Math., 2005.CrossRefGoogle Scholar
  58. 58.
    The Sedimentary Record of Sea-Level Change, Coe, A.L., Ed., Cambridge: Cambridge Univ. Press and the Open University, 2003.Google Scholar
  59. 59.
    Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving Ill-Posed Problems), Moscow: Nauka, 1979.Google Scholar
  60. 60.
    Torgerson, W.S., Multidimensional scaling: I. Theory and method, Psychometrica, 1952, vol. 17, pp. 401–419.CrossRefGoogle Scholar
  61. 61.
    Ulvmoen, M. and Omre, H., Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 1—Methodology, Geophysics, 2010, vol. 75, no. 2.CrossRefGoogle Scholar
  62. 62.
    Walker, M., Grant, S., Conolly, P., and Smith, L., Stochastic inversion for facies: a case study on the Schiehallion field, Interpretation, 2016, vol. 4, no. 3, pp. 1A–Y1.CrossRefGoogle Scholar
  63. 63.
    Yakovlev, I.V., Ampilov, Yu.P., and Filippova, K.E., Almost all about seismic inversion, part 2, Tekhnol. Seismorazvedki, 2011, no. 1, pp. 5–15.Google Scholar
  64. 64.
    Zavala, C., Carvajal, J., Mercano, J., and Delgado, M., Sedimentological indices: a new tool for regional studies of hyperpycnal systems, Sediment Transfer from Shelf to Deepwater—Revisiting the Delivery Mechanisms, AAPG Hedberg Conf. Proc., Ushuaia–Patagonia, March 3–7, 2008, AAPG Search and Discovery Article no. 50076.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ruspetro LTDMoscowRussia

Personalised recommendations