Skip to main content
Log in

Nonhydrostatic Stress State in the Martian Interior for Different Rheological Models

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

We analyze nonhydrostatic stress field in the Martian interior for two types of heterogeneous elastic models: the ones with a lithosphere and the ones with a lithosphere and probable melting zones within it. Numerical modeling of the system of elastic equilibrium equations for a gravitating planet is carried out on a 1 × 1 arc degree spherical grid down to a depth of 1000 km. The boundary conditions are specified by the topography and gravity field data determined relative to a hydrostatic equilibrium spheroid taken as the reference surface. High maximum shear stresses in the zones of high tensile stresses are assumed as the criterion for selecting the probable marsquake sources. Irrespective of the type of rheological model, the zones of the high shear and tensile stresses in the crust and mantle of the Mars arc revealed beneath Hellas Planitia, Argyre Planitia, Mare Acidalia, Arcadia Planitia plain, and Valles Marineris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Banerdt, W.B. et al. (InSight Collab.), InSight: a discovery mission to explore the interior of Mars, Proc. 44th Lunar and Planetary Science Conference, 2013, vol. 44, p. 1915.

  2. Batov, A.V., Gudkova, T.V., and Zharkov, V.N., Stress estimates in the Martian interior under local topographic structures, Geofiz. Issled., 2018, vol. 19, no. 3, pp. 5–22.

    Google Scholar 

  3. Birger, B.I., Dinamika litosfery Zemli (Dynamics of the Earth’s Lithosphere), Moscow: LENAND, 2016.

  4. Böse, M., Clinton, J.F., Ceylan, S., Euchner, F., van Driel, M., Khan, A., Giardini, D., Lognonne, P., and Banerdt, W.B., A probabilistic framework for single-station location of seismicity on Earth and Mars, Phys. Earth Planet Inter., 2017, vol. 262, pp. 48–65.

    Article  Google Scholar 

  5. Chuikova, N.A., Nasonova, L.P., and Maksimova, T.G., Anomalies of density, stresses, and the gravitational field in the interior of Mars, Mos. Univ. Phys. Bull., 2012, vol. 67, no. 2, pp. 218–225.

    Article  Google Scholar 

  6. Chujkova, N.A., Nasonova, L.P., and Maksimova, T.G., Density, stress, and gravity anomalies in the interiors of the Earth and Mars and the probable geodynamical implications: comparative analysis, Izv., Phys. Solid Earth, 2014, vol. 50, no. 3, pp. 427–443.

    Article  Google Scholar 

  7. Eshagh, M. and Tenzer, R., Sub-crustal stress determined using gravity and crust structure models, Comput. Geosci., 2014, vol. 19, pp. 115–125. https://doi.org/10.1007/s10596-014-9460-9

    Article  Google Scholar 

  8. Genova, A., Goossens, S., Lemoine, F.G., Mazarico, E., Neumann, G.A., Smith, D.E., and Zuber, M.T., Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science, Icarus, 2016, vol. 272, pp. 228–245.

    Article  Google Scholar 

  9. Grott, M., Baratoux, D., Hauber, E., Sautter, V., Mustard, J., Gasnault, O., Ruff, S.W., Karato, S.-I., Debaille, V., Knapmeyer, M., Sohl, F., Van Hoolst, T., Breuer, D., Morschhauser, A., Toplis, M.J., Long-Term Evolution of the Martian Crust-Mantle System, Space Sci. Rev., 2013, vol. 174, pp. 49–111.

    Article  Google Scholar 

  10. Gudkova, T.V., Lognonné, P., Zharkov, V.N., and Raevsky, S.N., On the scientific aims of the MISS seismic experiment, Sol. Sys. Res., 2014, vol. 48, no. 1, pp. 11–21.

    Article  Google Scholar 

  11. Gudkova T.V., Batov A.V., and Zharkov V.N., Model estimates of non-hydrostatic stresses in the Martian crust and mantle: 1. Two-level model, Sol. Sys. Res., 2017., vol. 51, no. 6, pp. 457–478.

    Article  Google Scholar 

  12. Khan, A., van Driel, M., Bose, M., Giardini, D., Ceylan, S., Yan, J., Clinton, J., Euchner, F., Lognonne, P., Murdoch, N., Mimoun, D., Panning, M., Knapmeyer, M., and Banerdt, W.B., Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms, Phys. Earth Planet. Inter., 2016, vol. 258, pp. 28–42.

    Article  Google Scholar 

  13. Konopliv, A.S., Asmar, S.W., Folkner, W.M., Karatekin, O., Nunes, D.C., Smrekar, S.E., Yoder, C.F., and Zuber, M.T., Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters, Icarus, 2011, vol. 211, pp. 401–428.

    Article  Google Scholar 

  14. Konopliv, A.S., Park, R.S., and Folkner, W.M., An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data, Icarus, 2016, vol. 274, pp. 253–260.

    Article  Google Scholar 

  15. Koshlyakov, E.M. and Zharkov, V.N., On the gravity field of Mars, Astron. Vestn., 1993, vol. 27, no. 2, pp. 12–22.

    Google Scholar 

  16. Lognonné, P., Banerdt, W. B., Giardini, D., Christensen, U., Mimoun, D., de Raucourt, D., Spiga, A., Garcia, R., Mocquet, A., Panning, M., Beucler, E., Boschi, L., Goetz, W., Pike, T., Johnson, C. et al., InSight and Single-Station Broadband Seismology: From Signal and Noise to Interior Structure Determination, 43rd Lunar and Planetary Science Conference 2012, Lunar and Planetary Inst. Technical Report, 2012, vol. 43, paper ID 1983.

  17. Manukin, A.B., Kalinnikov, I.I., Kalyuzhny, A.V., Andreev, O.N., High-sensitivity three-axis seismic accelerometer for measurements at the spacecraft and the planets of the solar system, Proc. Solar System Conf. 7ms3, Moscow: IKI RAN, 2016.

  18. Marchenkov, K.I., Lyubimov, V.M., and Zharkov, V.N., Calculation of loading coefficients for deep density anomalies, Dokl. Akad. Nauk SSSR, 1984, vol. 15, no. 2, pp. 583–586.

    Google Scholar 

  19. Marchenkov, K.I., Calculation of load numbers and their use for interpretation of non-equilibrium field of Venus and Earth, Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Schmidt Institute of Physics of the Earth, 1987.

  20. Marchenkov, K.I. and Zharkov, V.N., On the relief of the crust–mantle boundary and extension–compression stresses in the crust of Venus, Pis’ma Astron. Zh., 1989, vol. 15, no. 2, pp. 182–190.

    Google Scholar 

  21. Mimoun, D., Lognonné, P., Banerdt, W.B., Hurst, K., Deraucourt, S., Gagnepain-Beyneix, J., Pike, T., Calcutt, S., Bierwirth, M., Roll, R., Zweifel, P., Mance, D., Robert, O., Nébut, T., Tillier S. et al., The InSight SEIS Experiment, Lunar and Planetary Science Conference 2012, Lunar and Planetary Inst. Technical Report, 2012, Vol. 43, paper ID 1493.

  22. Nikishin, A.M., Geologicheskoe stroenie i evolyutsiya Marsa (Geological Structure and Evolution of Mars), Moscow: MGU, 1987.

  23. Panning, M., Beucler, E., Drilleau, M., Mocquet, A., Lognonne, Ph., and Banerdt, W.B., Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars, Icarus, 2015, vol. 248, pp. 230–242. https://doi.org/10.1016/j.icarus.2014.10.035

    Article  Google Scholar 

  24. Panning, M.P., Lognonne, Ph., Banerdt, W.B., Garsia, R., Golombek, M., Kedar, S., Knapmeyer-Endrun, B., Mocquet, A., Teanby, N.A., Tromp, J., Weber, R., Beucler, E., Blanchette-Guertin, J.-F., Drilleau, M., Gudkova, T. et al., Planned products of the Mars structure service for the InSight mission to Mars, Space Sci. Rev., 2017, vol. 211, pp. 611–650. https://doi.org/10.1007/s11214-016-0317-5

    Article  Google Scholar 

  25. Rebetsky, Yu.L., Tektonicheskie napryazheniya i prochnost’ prirodnykh massivov (Tectonic Stresses and Strength of Natural Rock Masses), Moscow: IKTs Akademkniga, 2007.

  26. Runcorn, S.K. Satellite gravity measurements and laminar viscous flow model of the Earth mantle, J. Geophys. Res., 1964, vol. 69, no. 20, pp. 4389–4394.

    Article  Google Scholar 

  27. Smith, D.E., Zuber, M.T., Frey, H.V. et al., Mars Orbiter Laser Altimeter: Experimental summary after the first year of global mapping of Mars, J. Geophys. Res., 2001, vol. 106, no. E10, pp. 23689–23722.

    Article  Google Scholar 

  28. Tenzer, R., Eshagh, M., and Jin, S. Martian sub-crustal stress from gravity and topographic models, Sci. Lett., 2015, vol. 425, pp. 84–92.

    Google Scholar 

  29. Zharkov, V.N. and Gudkova, T.V., On the model structure of the gravity field of Mars, Sol. Syst. Res., 2016, vol. 50, no. 4, pp. 235–250.

    Article  Google Scholar 

  30. Zharkov, V.N. and Marchenkov, K.I., O korrelyatsii kasatel’nykh napryazhenii v litosfere Venery s poverkhnostnymi strukturami, On the correlation of shear stresses in the Venusian lithosphere with surface structures, Astron. Vestn, 1987, vol. 21, no. 2, pp. 170–175.

    Google Scholar 

  31. Zharkov, V.N., Marchenkov, K.I., and Lyubimov, V.M., On long-period shear stresses in the lithosphere and mantle of Venus, Astron. Vestn, 1986, vol. 20, no. 3, pp. 202–211.

    Google Scholar 

  32. Zharkov, V.N., Koshlyakov, E.M., and Marchenkov, K.I., Composition, structure, and gravity field of Mars, Astron. Vestn., 1991, vol. 25, no. 5, pp. 515–547.

    Google Scholar 

  33. Zharkov, V.N., Gudkova, T.V., and Molodensky, S.M., On models of Mars’ interior and amplitudes of forced nutations. 1. The effects of deviation of Mars from its equilibrium state on the flattening of the core-mantle boundary, Phys. Earth Planet. Inter., 2009, vol. 172, pp. 324–334.

    Article  Google Scholar 

  34. Zharkov, V.N., Gudkova, T.V., and Batov, A.V., On estimating the dissipative factor of the Martian interior, Sol. Syst. Res., 2017, vol. 51, no. 6, pp. 479–526.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Sh.A. Muhamediev for his useful critical comments.

Funding

The work was carried out based on budget funding with partial support from the Presidium of the Russian Academy of Sciences under Program 28 and from the Russian Foundation for Basic Research (project no. 18-32-00875).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Batov, T. V. Gudkova or V. N. Zharkov.

Additional information

Translated by M. Nazarenko

STRESS CALCULATION ALGORITHM

STRESS CALCULATION ALGORITHM

The anomalous field of volume density \(\delta \rho (r,\theta ,\varphi )\) is expanded in a series of spherical functions

$$\begin{gathered} \delta \rho (r,\theta ,\phi ) = \sum\limits_{i,n,m} {{{R}_{{inm}}}(r){{Y}_{{inm}}}(\theta ,\varphi )} \\ = \sum\limits_{i = 1}^2 {\sum\limits_{n = 2}^\infty {\sum\limits_{m = 0}^n {{{R}_{{i,n,m}}}(r){{Y}_{{i,n,m}}}(\theta ,\varphi )} } } . \\ \end{gathered} $$
((A1b))

For the convenience of solving the problem, the field is represented by the sum of infinitely thin layers located at different depths:

$$\delta \rho (r,\theta ,\varphi ) = \sum\limits_{j = 1}^N {\sum\limits_{i = 1}^2 {\sum\limits_{n = 2}^\infty {\sum\limits_{m = 0}^n {a_{{in,m}}^{j}} } } } {{Y}_{{i,n,m}}}(\theta ,\varphi ),$$
((A1b))

where amplitudes \(a_{{i,n,m}}^{j} = {{R}_{{inm}}}({{r}_{j}})dr\) have the dimension [ML–2], index j is the depth of the location of the anomalous gravitating layer, N is the number of layers,

$${{Y}_{{inm}}}(\theta ,\varphi ) = {{P}_{{nm}}}(\cos \theta )\left\{ \begin{gathered} \cos (m\varphi ),\,\,\,\,i = 1 \hfill \\ \sin (m\varphi ),\,\,\,\,i = 2 \hfill \\ \end{gathered} \right.,$$

and

\({{P}_{{nm}}}(x)\) are the normalized Legendre functions

$$\begin{gathered} {{P}_{{nm}}}(x) = {{\left( {\frac{{2(n - m)!(2n + 1)}}{{(n + m)!}}} \right)}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}P_{n}^{m}(x),\,\,\,\,m \ne 0; \\ {{P}_{{nm}}}(x) = {{\left( {\frac{{(n - m)!(2n + 1)}}{{(n + m)!}}} \right)}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}P_{n}^{m}(x),\,\,\,\,m = 0, \\ {{P}_{{nm}}}(x) = {{(1 - {{x}^{2}})}^{{{m \mathord{\left/ {\vphantom {m 2}} \right. \kern-0em} 2}}}}\frac{d}{{d{{x}^{m}}}}({{P}_{n}}(x)). \\ \end{gathered} $$
((A2))

This spherical layer creates on the surface of a planet the gravity field

$$\Delta V = 4\pi GR\sum\limits_{i,n,m} {{{{\left( {\frac{r}{R}} \right)}}^{{n + 2}}}\frac{{{{R}_{{i,n,m}}}(r)}}{{(2n + 1)}}{{Y}_{{i,n,m}}}(\theta ,\varphi )} .$$
((A3))

Since the anomalous layer acts as a load on the planet, its interior experiences deformations leading to an additional perturbation of the potential. For obtaining the formula for the total anomalous potential that includes the global deformation of the planet, we introduce the term Kn(r) = (1 + kn(r)) in (A3):

$$\begin{gathered} \Delta V = 4\pi GR \\ \times \,\,\sum\limits_{i,n,m} {{{{\left( {\frac{r}{R}} \right)}}^{{n + 2}}}\frac{{{{R}_{{i,n,m}}}(r)(1 + {{k}_{n}}(r))}}{{(2n + 1)}}{{Y}_{{i,n,m}}}(\theta ,\varphi )} , \\ \end{gathered} $$
((A4))

where kn(r) (the load numbers of order n for a buried anomaly at a depth r) and Kn(r) (the Green function) were introduced in (Marchenkov et al., 1984; Zharkov et al., 1986).

In a similar way, we introduce numbers hn—the load numbers describing deformation D(φ, λ) of the planet under load \(\delta \rho (r,\varphi ,\lambda )\,:\)

$$D(\theta ,\phi ) = \frac{{4\pi GR}}{g}\sum\limits_{i,n,m} {{{{\left( {\frac{r}{R}} \right)}}^{{n + 2}}}\frac{{{{R}_{{i,n,m}}}(r){{h}_{n}}(r)}}{{(2n + 1)}}{{Y}_{{i,n,m}}}(\theta ,\varphi )} .$$
((A5))

We represent the components of the displacement vector \(\vec {u} = (u,v,w)\) in the spherical coordinate system

$$\begin{gathered} u = \sum\limits_{i,n,m} {{{U}_{n}}(r){{Y}_{{inm}}}(\theta ,\phi )} ,\,\,\,\,v = \sum\limits_{i,n,m} {{{V}_{n}}(r)\frac{{\partial {{Y}_{{inm}}}(\theta ,\phi )}}{{\partial \theta }}} , \\ w = \sum\limits_{i,n,m} {\frac{{{{V}_{n}}(r)}}{{\sin \theta }}\frac{{\partial {{Y}_{{inm}}}(\theta ,\phi )}}{{\partial \phi }}} . \\ \end{gathered} $$
((A6))

In the spherical coordinate system, variables yi (i = 1, …, 6) are introduced:

$$\begin{gathered} {{y}_{1}} = U,\,\,\,\,{{y}_{2}} = \lambda X + 2\mu \dot {U},\,\,\,\,{{y}_{3}} = V, \\ {{y}_{4}} = \mu \left( {\dot {V} - \frac{V}{r} + \frac{U}{r}} \right),\,\,\,\,{{y}_{5}} = P, \\ {{y}_{6}} = \dot {P} - 4\pi G{{\rho }_{0}}U, \\ \end{gathered} $$
((A7))

where y1, y2, y3, y4, y5, and y6 are the radial terms in the normal displacement, in the normal stress (σrr), in the shear displacement, in the shear stresses (σrθ, σrφ), in the perturbation of gravitational potential, and in the gradient of perturbation of the potential minus the contribution due to radial displacement, respectively.

Problem (1)–(3) is reduced to the solution of a system of six first-order ordinary differential equations (see (Marchenkov et al., 1984)).

$$\begin{gathered} {{{\dot {y}}}_{1}} = - \frac{{2\lambda {{y}_{1}}}}{{(\lambda + 2\mu )r}} + \frac{{{{y}_{2}}}}{{\lambda + 2\mu }} + \frac{{\lambda n(n + 1){{y}_{3}}}}{{(\lambda + 2\mu )r}}, \\ {{{\dot {y}}}_{2}} = \left[ { - 4{{\rho }_{0}}{{g}_{0}}r + \frac{{4\mu (3\lambda + 2\mu )}}{{(\lambda + 2\mu )}}} \right]\frac{{{{y}_{1}}}}{{{{r}_{2}}}} - \frac{{4\mu {{y}_{2}}}}{{(\lambda + 2\mu )r}} \\ + \,\,\left[ {n(n + 1){{\rho }_{0}}{{g}_{0}}r - \frac{{2\mu (3\lambda + 2\mu )n(n + 1)}}{{\lambda + 2\mu }}} \right]\frac{{{{y}_{3}}}}{{{{r}^{2}}}} \\ \end{gathered} $$
$$\begin{gathered} + \,\,\frac{{n(n + 1){{y}_{4}}}}{r} - {{\rho }_{0}}{{y}_{6}}, \\ {{{\dot {y}}}_{3}} = - \frac{{{{y}_{1}}}}{r} + \frac{{{{y}_{3}}}}{r} + \frac{{{{y}_{4}}}}{\mu }, \\ {{{\dot {y}}}_{4}} = \left[ {{{\rho }_{0}}{{g}_{0}}r - \frac{{2\mu (3\lambda + 2\mu )}}{{(\lambda + 2\mu )}}} \right]\frac{{{{y}_{1}}}}{r} - \frac{{\lambda {{y}_{2}}}}{{(\lambda + 2\mu )r}} \\ \end{gathered} $$
((A8))
$$\begin{gathered} + \,\,\left\{ { - {{\rho }_{0}}{{\sigma }^{2}}{{r}^{2}} + \frac{{2\mu }}{{\lambda + 2\mu }}[\lambda (2{{n}^{2}} + 2n - 1) + 2\mu ({{n}^{2}} + n - 1)]} \right\} \\ \times \,\,\frac{{{{y}_{3}}}}{{{{r}^{2}}}} - \frac{{3{{y}_{4}}}}{r} - \frac{{{{\rho }_{0}}{{y}_{5}}}}{r},\,\,\,\,{{{\dot {y}}}_{5}} = 4\pi G{{\rho }_{0}}{{y}_{1}} + {{y}_{6}}, \\ {{{\dot {y}}}_{6}} = - \frac{{4\pi G{{\rho }_{0}}n(n + 1){{y}_{3}}}}{r} + \frac{{n(n + 1)}}{{{{r}^{2}}}}{{y}_{5}} - \frac{{2{{y}_{6}}}}{r}, \\ \end{gathered} $$

where \(\lambda = K - \frac{2}{3}\mu .\)

Using the Runge-Kutta method, we find the solution for each harmonics n up to the given degree. As was noted above, in this work we use the expansions of the topography and gravity field up to degree and order 90.

In the calculations of the conventional (surface) load numbers, anomalous densities are located on the surface of the planet, \({{a}_{{nm}}}(r) = {{a}_{{nm}}}(r = R).\) Let us write out the conditions of the problem for this case.

On the surface of the sphere r = R:

(a) the absence of shear stresses:

$${{y}_{4}}(R) = \mu \left( {\dot {V} - \frac{V}{r} + \frac{U}{r}} \right) = 0;$$

(b) the condition on the normal force due to the load:

$${{y}_{2}}(R) = \lambda X + 2\mu \dot {U} = - {{g}_{0}}(R){{a}_{{nm}}}(R);$$

(c) the boundary condition for the potential:

$${{y}_{6}}(R) + \frac{{(n + 1)}}{R}{{y}_{5}}(R) = 4\pi G{{a}_{{nm}}}.$$

Equations (A3) are integrated from the boundary of the outer liquid core, \(r = {{r}_{c}},\) which is taken into account by the corresponding conditions on this boundary. These conditions have the following form:

(a) the absence of shear stresses

$${{y}_{4}}({{r}_{c}}) = 0;$$

(b) the condition of the normal force due to the load:

$${{y}_{2}}({{r}_{c}}) = {{\rho }_{{0i}}}({{r}_{c}})({{y}_{1}}({{r}_{c}}){{g}_{0}}({{r}_{c}}) - {{y}_{5}}({{r}_{c}});$$

(c) the boundary condition for the potential

$${{y}_{5}}({{r}_{c}})\gamma ({{r}_{c}}) + \frac{{(n)}}{{{{r}_{c}}}}\gamma - {{y}_{6}}({{r}_{c}}) = 4\pi G{{\rho }_{i}}{{y}_{1}}({{r}_{c}}).$$

Molodenskii’s function γ is determined by the structure of the core. In the case of a uniform core γ = 0.

In the case of a buried anomalous density \(a_{{inm}}^{j}(r < R),\) the boundary conditions change.

On the surface, r = R:

$$\begin{gathered} {{y}_{4}}(R) = 0,\,\,\,\,{{y}_{2}}(R) = 0, \\ {{y}_{6}}(R) + \frac{{(n + 1)}}{R}{{y}_{5}}(R) = 0. \\ \end{gathered} $$

On the core–shell boundary, the conditions are the same as in the case of the surface loads provided that the anomalous densities are not located on this surface.

At the transition through the anomalous layer, at depths rj, functions y2 and y6 have the following jumps:

(a) the discontinuity in the anomalous force:

$${{y}_{2}}({{r}_{j}} - 0) - {{y}_{2}}({{r}_{j}} + 0) = - {{g}_{0}}({{r}_{j}}){{a}_{{nm}}}({{r}_{j}});$$

(b) the break in the normal derivative of the potential:

$${{y}_{6}}({{r}_{j}} - 0) - {{y}_{6}}({{r}_{j}} + 0) = 4\pi G{{a}_{{nm}}}({{r}_{j}}).$$

The other functions yi remain continuous. Thus, the elastic problem is completely defined.

The load coefficients (load Love numbers) are determined by the following formulas:

$$\bar {h}_{n}^{j} = \frac{{{{y}_{1}}(R)}}{R},\,\,\,\,\bar {k}_{n}^{j} = \frac{{{{y}_{5}}(R)}}{{R\bar {g}}} - 1,$$

where \(R\) and \(\bar {g}\) are the mean radius and mean gravitational acceleration on the surface.

Also, the load numbers are used:

$$h_{n}^{j} = \bar {h}_{n}^{j}{{\left( {\frac{{{{r}_{j}}}}{R}} \right)}^{{n + 2}}},\,\,\,\,k_{n}^{j} = (1 + \bar {k}_{n}^{j}){{\left( {\frac{{{{r}_{j}}}}{R}} \right)}^{{n + 2}}} - 1.$$

The solution of the system of equations (9) allows us to find the displacement field for each harmonic degree n and each depth j and then the field of the nonhydrostatic stress tensor.

The strain tensor components in the spherical coordinates have the following form:

$$\begin{gathered} {{\varepsilon }_{{rr}}} = \frac{{\partial u}}{{\partial r}},\,\,\,\,{{\varepsilon }_{{\theta \theta }}} = \frac{1}{r}\frac{{\partial v}}{{\partial \theta }} + \frac{u}{r}, \\ {{\varepsilon }_{{\phi \phi }}} = \frac{1}{{r\sin \theta }}\frac{{\partial w}}{{\partial \phi }} + \frac{v}{r}\cot \theta + \frac{u}{r}, \\ {{\varepsilon }_{{r\theta }}} = \frac{1}{2}\left( {\frac{{\partial v}}{{\partial r}} - \frac{v}{r} + \frac{1}{r}\frac{{\partial u}}{{\partial \theta }}} \right), \\ {{\varepsilon }_{{r\phi }}} = \frac{1}{2}\left( {\frac{1}{{r\sin \theta }}\frac{{\partial u}}{{\partial \phi }} + \frac{{\partial w}}{{\partial r}} - \frac{w}{r}} \right), \\ {{\varepsilon }_{{\theta \phi }}} = \frac{1}{2}\left( {\frac{1}{r}\frac{{\partial w}}{{\partial \theta }} - \frac{w}{r}\cot \theta + \frac{1}{{r\sin \theta }}\frac{{\partial v}}{{\partial \phi }}} \right). \\ \end{gathered} $$
((A9))

The stress tensor components are determined through the strain tensor components:

$$\begin{gathered} {{\sigma }_{{rr}}} = \lambda \Delta + 2\mu {{\varepsilon }_{{rr}}},\,\,\,\,{{\sigma }_{{\theta \theta }}} = \lambda \Delta + 2\mu {{\varepsilon }_{{\theta \theta }}}, \\ {{\sigma }_{{\phi \phi }}} = \lambda \Delta + 2\mu {{\varepsilon }_{{\phi \phi }}},\,\,\,\,{{\sigma }_{{r\theta }}} = 2\mu {{\varepsilon }_{{r\theta }}}, \\ {{\sigma }_{{r\phi }}} = 2\mu {{\varepsilon }_{{r\varphi }}},\,\,\,\,{{\sigma }_{{\theta \phi }}} = 2\mu {{\varepsilon }_{{\theta \phi }}}, \\ \end{gathered} $$
((A10))

where Δ is dilatation:

$$\begin{gathered} \Delta = \sum\limits_{i = 1}^2 {\sum\limits_n {\sum\limits_m {{{X}_{n}}(r){{Y}_{{inm}}}(\theta ,\phi )} } } , \\ {{X}_{n}}(r) = {{{\dot {U}}}_{n}}(r) + \frac{2}{r}{{U}_{n}}(r) - \frac{{n(n + 1)}}{r}{{V}_{n}}(r), \\ \end{gathered} $$
((A11))

where the dot denotes differentiation with respect to r, θ is the polar angle, ϕ is longitude, and λ = K–2/3μ is the Lame parameter.

Substituting (A6) and (A9) into (A10) and summing up the harmonic series, we obtain the stress tensor components \({{\sigma }_{{ik}}}\) to the given degree n. The arbitrary additional nonhydrostatic stress state at the point under consideration is characterized by the extension or compression of the vicinity of the point in three mutually perpendicular directions. At each point (r, θ, ϕ), the symmetric total stress tensor σik is reduced through the transformation of the coordinates to the diagonal form, which makes it possible to obtain the respective normal stresses \({{\sigma }_{1}},\)\({{\sigma }_{2}},\) and \({{\sigma }_{3}}.\) The principal stresses σ3 ≤ σ2 ≤ σ1 are found as the roots of the cubic equation \(\left| {{{\sigma }_{{ik}}} - {{\sigma }_{k}}{{\delta }_{{ik}}}} \right| = 0,\)i = 1, 2, 3.

The flow chart of the calculations is shown in Fig. A1.

Fig. A1.
figure 6

Flow chart of stress calculation in Mars interior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batov, A.V., Gudkova, T.V. & Zharkov, V.N. Nonhydrostatic Stress State in the Martian Interior for Different Rheological Models. Izv., Phys. Solid Earth 55, 688–700 (2019). https://doi.org/10.1134/S1069351319040025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351319040025

Keywords:

Navigation