Izvestiya, Physics of the Solid Earth

, Volume 55, Issue 2, pp 287–297 | Cite as

The History and State-of-the-Art of the Studies of Native Iron in Terrestrial and Extraterrestrial Rocks

  • D. M. Pechersky
  • G. P. MarkovEmail author


The history of the studies of native iron in terrestrial rocks and meteorites is briefly reviewed. Numerous data on the distribution, composition, and grain size of metal iron particles in sediments and other terrestrial rocks, as well as in meteorites, obtained by thermomagnetic analysis with heating to 800°C in combination with microprobe analysis are synthesizes and systematized. The studies have shown that the iron particles in all the studied sediments typically have an extraterrestrial origin. Based on the statistical analysis of the thermomagnetic data, a number of indications (statistical regularities) testifying to the overwhelmingly extraterrestrial origin of the iron particles in the sediments are proposed. The similarity of the conditions of the formation of metal iron particles of terrestrial and extraterrestrial origin allow a petromagnetic scheme of the structure of planets to be suggested based on the distribution of metal iron in them.


iron nickel sediments basalts meteorites thermomagnetic analysis microprobe analysis 



We thank V. Tselmovich for conducting the microprobe analysis of the samples and A. Kosterov for his useful comments and correction of the text. The work was conducted as part of a state contract of IPE RAS.


  1. 1.
    Antipin, V.S., Kuz’min, M.I., Pecherskii, D.M., Tsel’mo-vich, V.A., and Yazev, S.A., The substance of the Chelyabinsk meteorite: results of geochemical and thermomagnetic studies, Dokl. Earth Sci., 2014, vol. 458, no. 1, pp. 1082–1085.CrossRefGoogle Scholar
  2. 2.
    Baker, J., Bizzarro, M., Witting, N., Connelly, J., and Haack, H., Early planetesimal melting from an age 4566 Gyr for differentiated meteorites, Nature, 2005, vol. 436, no. is. 7054, pp. 1127–1131.Google Scholar
  3. 3.
    Bonvier, A. and Wadhwa, M., The age of the Solar system redefined by the oldest Pb-Pb age of meteoritic inclusion, Nat. Geosci., 2010, vol. 3, pp. 637–641.CrossRefGoogle Scholar
  4. 4.
    Brownlee, D.E., Cosmic dust: collection and research, Ann. Rev. Earth Planet. Sci., 1985, vol. 13, pp. 147–173.CrossRefGoogle Scholar
  5. 5.
    Encyclopedia Britannica, Art. Meteorites, 2nd ed., 2012. Scholar
  6. 6.
    Evans, M.E., Magnetoclimatology: a test of the wind-vigour model using 1980 Mount St. Hellens ash, Earth. Planet. Sci. Lett., 1999, vol. 172, nos. 3–4, pp. 255–259.CrossRefGoogle Scholar
  7. 7.
    Fredriksson, K. and Martin, I.R., The origin of black spherules found in the Pacific islands, deep sea sediments, and Antarctic ice, Geochim. Cosmochim. Acta, 1963, vol. 27, pp. 245–248.CrossRefGoogle Scholar
  8. 8.
    Grachev, A.F., Kollmann, H.A., Korchagin, O.A., et al., The K/T boundary of Gams (Eastern Alps, Austria) and the nature of terminal Cretaceous mass extinction, in Abhandlungen der geologischen bundesanstalt, Grachev, A.F., Ed., 2009, band 63, pp. 89–134.Google Scholar
  9. 9.
    Grachev, A.F., Korchagin, O.A., Tselmovich, V.A., and Kollmann, H.A., Cosmic dust and micrometeorites in the transitional clay layer at the Cretaceous–Paleogene boundary in the Gams section (Eastern Alps): morphology and chemical composition, Izv., Phys. Solid Earth, 2008, vol. 44, no. 7, pp. 555–269.CrossRefGoogle Scholar
  10. 10.
    Grachev, A.F., Pechersky, D.M., Borisovskii, V.A., and Tselmovich, V.A., Magnetic minerals in sediments at the Cretaceous/Paleogene boundary (the Gams section, Eastern Alps), Izv., Phys. Solid Earth, 2008, vol. 44, no. 10, pp. 789–803.CrossRefGoogle Scholar
  11. 11.
    Hubbard, W.B., Planetary Interiors, New York: Van Nostrand Reinhold, 1984.Google Scholar
  12. 12.
    Keller, G., Impact stratigraphy. Old principle, new reality, in The Sedimentary Record of Meteorite Impacts, Evans, K.R., Horton, J.W., King, D.T., and Morrow, J.R., eds., Geol. Soc. America Special paper, 2008, vol. 437, pp. 147–178.Google Scholar
  13. 13.
    Lukin, A.E., Native metals and carbides as the markers of the composition of deep geospheres, Geofiz. Zh., 2006, no. 4, pp. 17–46.Google Scholar
  14. 14.
    Marakushev, A.A., Granovskii, L.B., and Zinov’eva, N.G., Kosmicheskaya petrologiya (Extraterrestrial Petrology), Moscow: MGU, 1992.Google Scholar
  15. 15.
    Markov, G.P., Pechersky, D.M., and Tselmovich, V.A., Magnetic minerals of the Chelyabinsk Meteorite, Sol. Syst. Res., 2015, vol. 49, no. 5, pp. 313–317.CrossRefGoogle Scholar
  16. 16.
    McFadden, L., Weissman, P.R., and Johnson, T.V., Encyclopedia of the Solar System, San Diego: Academic Press, 2007.Google Scholar
  17. 17.
    Murray, S. and Renard, A.F., Report on deep-sea deposits based on the specimens collected during the voyage of H.M.S. Challenger in the years 1872 to 1876, in: Challenger Reports, Edinburgh: HMSO, 1891, vol. 3.Google Scholar
  18. 18.
    Nagata, N., Sugiura, N., Fisher, R.M., Schwerer, F.C., Fuller, M.D., and Dunn, J.R., Magnetic properties of Apollo 11-17 lunar materials with special reference to effects of meteorite impact, Proc. Fifth Lunar Conference, 1974, vol. 3, pp. 2827-2839.Google Scholar
  19. 19.
    Nagata, T., Ishikawa, Y., and Kinoshita, H., Magnetic properties of Lunar samples, Science, 1970, vol. 167, pp. 703–706.CrossRefGoogle Scholar
  20. 20.
    Novgorodova, M.I., Kristallokhimiya samorodnykh metallov i prirodnykh intermetallicheskikh soedinenii (Crystal Chemistry of Native Metals and Natural Intermetallic Compounds), Science and Technology Review, Ser. Crystal Chemistry, Moscow: VINITI, 1994, vol. 29.Google Scholar
  21. 21.
    Parkin, D.W., Sullivan, R.A.L., and Andrews, J.N. Further studies on cosmic spherules from deep sea sediments. Philos. Trans. R. Soc. London, 1980, vol. 297, pp. 495–518.CrossRefGoogle Scholar
  22. 22.
    Patterson, C., Age of meteorites and the Earth, Geochim. Cosmochim. Acta, 1956, vol. 10, pp. 230–237.CrossRefGoogle Scholar
  23. 23.
    Pecherskii, D.M., Enrichment of sediments in iron hydroxides at the Mesozoic–Cenozoic boundary: a synthesis of petromagnetic data, Izv., Phys. Solid Earth, 2008a, vol. 44, no. 3, pp. 232–238.CrossRefGoogle Scholar
  24. 24.
    Pechersky, D.M., Metallic iron in sediments at the Mesozoic–Cenozoic (K/T) boundary, Russ. J. Earth Sci., 2008b, vol. 10, no. 6, pp. 1–9, ES6006.
  25. 25.
    Pechersky, D.M., Iron from space, Zemlya Vselennaya, 2010a, no. 6, pp. 68–75.Google Scholar
  26. 26.
    Pechersky, D.M., Metallic iron and nickel in Cretaceous and Cenozoic sediments: the results of thermomagnetic analysis, J. Environ. Prot., 2010b, vol. 1, no. 2, pp. 143–154.CrossRefGoogle Scholar
  27. 27.
    Pechersky, D.M., Samorodnoe zhelezo i drugie magnitnye mineraly v osadkakh: termomagnitnye priznaki kosmicheskogo proiskhozhdensiya (Native Iron and Other Magnetic Minerals in Sediments: Thermomagnetic Signs of Extraterrestrial Origin), Saarbrücken: Palmarium, 2012.Google Scholar
  28. 28.
    Pechersky, D.M., Magnetic minerals from space, Zemlya Vselennaya, 2013, no. 2, pp. 59–70.Google Scholar
  29. 29.
    Pechersky, D.M., Microprobe and thermomagnetic study of iron particles in sediments: a synthesis, Eksp. Geokhim., 2015a, vol. 2, no. 1, pp. 103–107.Google Scholar
  30. 30.
    Pechersky, D.M., Raspredelenie chastits samorodnogo zheleza i Fe–Ni splavov na planetakh (Particle Distribution of Native Iron and Fe–Ni Alloys on Planets), Saarbrücken: Palmarium Academic Publishing, 2015b.Google Scholar
  31. 31.
    Pecherskii, D.M., Abundance of metallic iron on planets, Geofiz. Zh., 2016, no. 5, pp. 13–24.Google Scholar
  32. 32.
    Pecherskii, D.M., Distribution of metallic iron in the interior of planets, Zemlya Vselennaya, 2017, no. 6, pp. 82–89.Google Scholar
  33. 33.
    Pechersky, D.M. and Didenko, A.N., Paleoaziatskii okean: petromagnitnaya i paleomagnitnaya informatsiya o ego litosfere (Paleo-Asian Ocean: Rock Magnetic and Paleomagnetic Information about Its Lithosphere), Moscow: OIFZ RAN, 1995.Google Scholar
  34. 34.
    Pecherskii, D.M. and Kuzina, D.M., Nickel-free iron particles in sediments, Izv., Phys. Solid Earth, 2015, vol. 51, no. 6, pp. 897–909.CrossRefGoogle Scholar
  35. 35.
    Pechersky, D.M. and Kuzina, D.M., Extraterrestrial metallic iron in the lacustrine, epicontinental and oceanic sediments: a review of thermomagnetic and microprobe analyzes data, J. Geol. Geophys., 2016, vol. 260,
  36. 36.
    Pecherskii, D.M. and Sharonova, Z.V., Thermomagnetic evidence of native iron in sediments, Izv., Phys. Solid Earth, 2012, vol. 48, no. 4, pp. 320–325.CrossRefGoogle Scholar
  37. 37.
    Pechersky, D.M. and Sharonova, Z.V., A relationship between the concentration of native iron particles in sediments and the rate of their accumulation: a synthesis of thermomagnetic data, Izv., Phys. Solid Earth, 2013, vol. 49, no. 5, p. 718–724.CrossRefGoogle Scholar
  38. 38.
    Pechersky, D.M., Grachev, A.F., Nourgaliev, D.C., Tselmovich, V.A., and Sharonova, Z.V., Magnetolithologic and magnetomineralogical characteristics of deposits at the Mesozoic/Cenozoic boundary: Gams section (Austria), Russ. J. Earth Sci., 2006a, vol. 8, no. 3, ES3001. Google Scholar
  39. 39.
    Pecherskii, D.M., Nurgaliev, D.K., and Sharonova, Z.V., Magnetolithologic and magnetomineralogical characteristics of sediments at the Mesozoic/Cenozoic boundary: The Koshak section (Mangyshlak Peninsula), Izv., Phys. Solid Earth, 2006b, vol. 42, no. 11, pp. 957–970.CrossRefGoogle Scholar
  40. 40.
    Pechersky, D.M., Nurgaliev, D.K., Tsel’movich, V.A., and Sharonova, Z.V., Rock magnetism of Gams sediments, Austria, at Mesozoic/Cenozoic boundary, in Sbornik, posvyashchennyi pamyati L.E. Sholpo “Issledovanie magnitnykh svoistv gornykh porod” (Collection of Papers in Commemoration of L.E. Sholpo “Study of Magnetic Properties of Rocks”), Vladivostok: Dal’nevost. univ., 2006c, pp. 64–75.Google Scholar
  41. 41.
    Pechersky, D.M., Grachev, A.F., Nourgaliev, D.K., and Tselmovich, V.A., Magnetomineralogical characteristic of clay layer at the Cretaceous–Paleogenic boundary (Gams section, Eastern Alps, Austria), Geofiz. Issled., 2008a, vol. 9, no. 4, pp. 29–39Google Scholar
  42. 42.
    Pechersky, D.M., Grachev, A.F., Nourgaliev, D.K., Tselmovich, V.A., and Sharonova, Z.V., Petromagnetic features of sediments at the Mesozoic–Cenozoic boundary: results from the Gams section, Izv., Phys. Solid Earth, 2008b, vol. 44, no. 5, pp. 401–420.CrossRefGoogle Scholar
  43. 43.
    Pechersky, D.M., Nurgaliev, D.K., and Trubikhin, V.M., Native iron in Miocene sediments, Russ. J. Earth Sci., 2008c, vol. 10, p. ES6004. Google Scholar
  44. 44.
    Pecherskii, D.M., Asanidze, B.Z., Nurgaliev, D.K., and Sharonova, Z.V., Petromagnetic and paleomagnetic characterization of Mesozoic/Cenozoic deposits: the Tetritskaro section (Georgia), Izv., Phys. Solid Earth, 2009a, vol. 45, no. 2, pp. 134–149.CrossRefGoogle Scholar
  45. 45.
    Pechersky, D.M., Nurgaliev, D.K., and Sharonova, Z.V., Magnetic properties of the boundary layer at the Cretaceous/Tertiary boundary in the Gams section, Eastern Alps, Austria, Izv., Phys. Solid Earth, 2009b, vol. 45, no. 6, pp. 482–494.CrossRefGoogle Scholar
  46. 46.
    Pechersky, D.M., Nourgaliev, D.K., and Sharonova, Z.V., Magnetic properties of rocks of the Gams section, Chapter 5 in The K/T Boundary of Gams (Eastern Alps, Austria) and the Nature of Terminal Cretaceous Mass Extinction, Grachev, A.F., Ed., Abhandlungen der geologischen bundesanstalt, band 63, 2009c, pp. 89–134.Google Scholar
  47. 47.
    Pechersky, D.M., Nurgaliev, D.K., and Fomin, V.A., Cosmic iron in sediments: the results of thermomagnetic analysis, Vestn. Otd. Nauk Zemle RAN, 2010, vol. 2, pp. 185–192, NZ6025.
  48. 48.
    Pechersky, D.M., Nurgaliev, D.K., Fomin, V.A., Sharo-nova, Z.V., and Gil’manova, D.M., Extraterrestrial iron in the Cretaceous–Danian sediments, Izv., Phys. Solid Earth, 2011, vol. 47, no. 5, pp. 379–401CrossRefGoogle Scholar
  49. 49.
    Pechersky, D.M., Kandinov, M.N., Markov, G.P., Plyashkevich, A.A., and Tselmovich, V.A., Combination of thermomagnetic and microprobe studies of extraterrestrial magnetic minerals: data on the structure and evolution of planets, Issledovano v Rossii, 2012a, pp. 437–452. Scholar
  50. 50.
    Pechersky, D.M., Kandinov, M.N., Markov, G.P., Plyashkevich, A.A., Tsel’movich, V.A., and Sharonova, Z.V., Magnetic minerals of meteorites, in Nauka i prosveshchenie. Posvyashchaetsya 150-letiyu so dnya rozhdeniya akademika V.I. Vernadskogo (Science and Education. In Commemoration of the 150th Anniversary of the Birth of Academician V.I. Vernadskii), Moscow: GGM, 2012b, pp. 166–185.Google Scholar
  51. 51.
    Pechersky, D.M., Markov, G.P., Tsel’movich, V.A., and Sharonova, Z.V., Extraterrestrial magnetic minerals, Izv., Phys. Solid Earth, 2012c, vol. 48, nos. 7–8, pp. 653–670.CrossRefGoogle Scholar
  52. 52.
    Pechersky, D.M., Gil’manova, D.M., Ivanov, E.V., Kuz’min, M.I., Markov, G.P., Nurgaliev, D.K., and Tsel’movich, V.A., Native iron in the sediments of Lake Baikal (borehole BDP-98): results of thermomagnetic analysis, Rus. Geol. Geophys., 2013a, vol. 54, no. 9, pp. 1045–1055.CrossRefGoogle Scholar
  53. 53.
    Pecherskii, D.M., Gil’manova, D.M., Markov, G.P., Murdmaa, I.O., Nurgaliev, D.K., Tsel’movich, V.A., and Sharonova, Z.V., Native iron and other magnetic minerals in the sediments of the Northwestern Atlantic: thermomagnetic and microprobe evidence, Izv., Phys. Solid Earth, 2013b, vol. 49, no. 3, pp. 426–448CrossRefGoogle Scholar
  54. 54.
    Pechersky, D.M., Gil’manova, D.M., Kazansky, A.Yu., Krivonogov, S.K., Nurgaliev, D.K., and Tsel’movich, V.A., Native iron in Quaternary deposits of the Darhad Basin (northern Mongolia), Russ. Geol. Geophys., 2013c, vol. 54, no. 12, pp. 1499–1514.CrossRefGoogle Scholar
  55. 55.
    Pechersky, D.M., Kuzina, D.M., Nurgaliev, D.K., and Tsel’movich, V.A., The common nature of native iron in terrestrial rocks and meteorites: microprobe and thermomagnetic data, Izv., Phys. Solid Earth, 2015a, vol. 51, no. 5, pp. 748–763.CrossRefGoogle Scholar
  56. 56.
    Pechersky, D.M., Markov, G.P., and Tsel’movich, V.A., Pure iron and other magnetic minerals in meteorites, Sol. Syst. Res., 2015b, vol. 49, no. 1, pp. 61–71.CrossRefGoogle Scholar
  57. 57.
    Pechersky, D.M., Kuzina, D.M., Ivanov, E.V., Kuz’min, M.I., Nurgaliev, D.K., and Tsel’movich, V.A., Thermomagnetic analysis of native iron from the upper sedimentary horizons of Lake Baikal, section GC-99 (Posolskaya Bank), Rus. Geol. Geophys., 2017a, vol. 58, no. 12, pp. 1561–1569.CrossRefGoogle Scholar
  58. 58.
    Pechersky, D. M., Kuzina, D.M., Markov, G.P., and Tsel’movich, V.A., Native iron in the Earth and space, Izv., Phys. Solid Earth, 2017b, vol. 53, no. 5, pp. 658–676.CrossRefGoogle Scholar
  59. 59.
    Pechersky, D.M., Kazanskii, A.Yu., Markov, G.P., Tselmovich, V.A., and Shchetnikov, A.A., Unique phenomenon of the accumulation of terrestrial metal iron particles in lacustrine deposits: Zhombolok volcanic region, East Sayan, Izv., Phys. Solid Earth, 2018, vol. 54, no. 1, pp. 106–120.CrossRefGoogle Scholar
  60. 60.
    Petromagnitnaya model’ litosfery (Petromagnetic Model of the Lithosphere), Pashkevich, I.K., Ed., Kiev: Naukova Dumka, 1994.Google Scholar
  61. 61.
    Shterenberg, L.S. and Vasil’eva, G.L., Native metals and intermetallic compounds in sediments of northeastern Pacific, Litol. Polezn. Iskop., 1979, no. 2, pp. 133–139.Google Scholar
  62. 62.
    Tsel’movich, V.A., Pechersky, D.M., and Markov, G.P., Distinctive characteristics of magnetic minerals of the Chelkyabinsk meteorite, in Meteorit Chelyabinsk—god na Zemle: materialy Vserossiiskoi nauchnoi konferentsii (Chelyabinsk Meteorite: One Year on the Earth. Proc. All-Russian Scientific Coference), Chelyabinsk: CIP, Chelyabinsk OUNB, 2014, pp. 612–636.Google Scholar
  63. 63.
    Weiss, B.P., Gattacceca, J., Stanley, S., Rochette, P., and Christensen, U.R., Paleomagnetic records of meteorites and early planetesimal differentiation, Space Sci. Rev., 2010, vol. 152, nos. 1–4, pp. 341–390.CrossRefGoogle Scholar
  64. 64.
    Zharkov, V.N., Vnutrennee stroenie Zemli i planet (Interior Structure of the Earth and Planets), Moscow: Nauka, 2013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (IPE RAS)MoscowRussia

Personalised recommendations