Izvestiya, Physics of the Solid Earth

, Volume 54, Issue 6, pp 872–885 | Cite as

Accuracy Estimation of the Modern Core Magnetic Field Models Using DMA-Methods for Recognition of the Decreased Geomagnetic Activity in Magnetic Observatory Data

  • A. A. Soloviev
  • A. G. Smirnov


A new approach to identify the signals of the Earth’s main magnetic field (core field) based on the magnetic observatory data processing is suggested. The algorithms implemented in the approach are based on the Discrete mathematical analysis (DMA). The developed method is used to analyze the data from 49 midand low-latitude observatories of the INTERMAGNET network collected in 2011–2015. The results are compared with the classical method for determining the periods of low magnetic activity of external origin which is adopted by the International Association for Geomagnetism and Aeronomy (IAGA). The advantages of the suggested new approach are demonstrated. Based on the data records for the selected time intervals, the time series of the core field components and their secular variations are obtained for each observatory. These data are compared to the values predicted by the most accurate core field models: SIFM, CHAOS-6, and EMM-2015. The accuracy of the models is estimated using a set of statistical parameters: Pearson’s coefficient of linear correlation, Spearman’s and Kendall’s coefficients of rank correlation, the mean and median values over the data sets, and the mean difference between the data obtained by the suggested method from observatory measurements and the model predictions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agayan, S., Bogoutdinov, S., Soloviev, A., and Sidorov, R., The study of time series using the DMA methods and geophysical applications, Data Sci. J., 2016, vol. 15, pp. 1–21. CrossRefGoogle Scholar
  2. Bartels, J., The technique of scaling indices K and Q of geomagnetic activity, Ann. Int. Geophys. Year, 1957a, vol. 4, pp. 215–226.Google Scholar
  3. Bartels, J., The geomagnetic measures for the time-variations of solar corpuscular radiation, described for use in correlation studies in other geophysical fields, Ann. Int. Geophys. Year, 1957b, vol. 4, pp. 227–236.Google Scholar
  4. Chapman, S. and Bartels, J., Geomagnetism, vols. 1 and 2 (1940); 2nd ed., Oxford: Oxford Univ. Press, 1962.Google Scholar
  5. Chulliat, A. and Maus, S., Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010, J. Geophys. Res. Solid Earth, 2014, vol. 119, pp. 1531–1543. doi 10.1002/2013JB010604CrossRefGoogle Scholar
  6. Finlay, C., Olsen, N., Kotsiaros, S., Gillet, N., and Toffner-Clausen, L., Recent geomagnetic secular variation from SWARM and ground observatories as estimated in CHAOS-6 geomagnetic field model, Earth Planets Space, 2016, vol. 68.
  7. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., Ledenev, A.V., Zlotniki, Zh., and Bonnin, Zh., Mathematical methods of geoinformatics. II. Fuzzy-logic algorithms in the problems ofabnormality separation in time series, Cybern. Syst. Anal., 2003, vol. 39, no. 4, pp. 555–563.CrossRefGoogle Scholar
  8. Gvishiani, A.D., Agayan, S.M., and Bogoutdinov, Sh.R., Fuzzy recognition of anomalies in time series, Dokl. Earth Sci., 2008a, vol. 421, no. 1, pp. 838–842.CrossRefGoogle Scholar
  9. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., Zlotnicki, J., and Bonnin, J., Mathematical methods of geoinformatics. III. Fuzzy comparisons and recognition of anomalies in time series, Cybern. Syst. Anal., 2008b, vol. 44, no. 3, pp. 309–323.CrossRefGoogle Scholar
  10. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., and Soloviev, A.A., Discrete mathematical analysis and applications in geology and geophysics, Vestnik KRAUNTs. Nauki Zemle, 2010, no. 2, pp. 109–125.Google Scholar
  11. Gvishiani, A., Lukianova, R., Soloviev, A., and Khokhlov, A., Survey of geomagnetic observations made in the northern sector of russia and new methods for analysing them, Surv. Geophys., 2014, vol. 35, no. 5, pp. 1123–1154. doi 10.1007/s10712-014-9297-8CrossRefGoogle Scholar
  12. Gvishiani, A., Soloviev, A., Krasnoperov, R., and Lukianova, R., Automated hardware and software system for monitoring the Earth’s magnetic environment, Data Sci. J., 2016a, vol. 15.
  13. Gvishiani, A.D., Sidorov, R.V., Lukianova, R.Yu., and Soloviev, A.A., Geomagnetic activity during St. Patrick’s Day storm inferred from global and local indicators, Russ. J. Earth Sci., 2016b, vol. 16. doi 10.2205/2016ES000593Google Scholar
  14. Kother, L., Hammer, M.D., Finlay, C.C., and Olsen, N., An equivalent source method for modelling the global lithospheric magnetic field, Geophys. J. Int., 2015, vol. 203, no. 1, pp. 553–566. CrossRefGoogle Scholar
  15. Kotsiaros, S., Finlay, C., and Olsen, N., Estimation of the magnetic field gradient tensor using the Swarm constellation, Geophys. Res. Abstr., 2014, vol. 16.Google Scholar
  16. Love, J.J. and Remick, K.J., Magnetic indices, in Encyclopedia of Geomagnetism and Paleomagnetism, Gubbins, D. and Herrero-Bervera, E., Eds., New York: Springer, 2007, pp. 509–512.CrossRefGoogle Scholar
  17. Mariska, J.T. and Oster, L., Solar activity and the variations of the geomagnetic Kp-index, Sol. Phys., 1972, vol. 26, pp. 241–249.CrossRefGoogle Scholar
  18. Mayaud, P.N., Derivation, Meaning and use of Geomagnetic Indices, AGU Geophys. Monograph Ser., no. 22, Washington: AGU, 1980.Google Scholar
  19. McPherron, R.L., Indices of geomagnetic activity, in Introduction to Space Physics, Kivelson M.G. and Russell, C.T., Eds., Cambridge, UK: Cambridge Univ. Press, pp. 451–458.Google Scholar
  20. Menvielle, M. and Berthelier, A., The K-derived planetary indices—description and availability. Rev. Geophys., 1991, vol. 29, pp. 415–432.CrossRefGoogle Scholar
  21. Merrill, R.T., McElhinny, M.W., and McFadden, P.L., The Magnetic Field of the Earth. Paleomagnetism, the Core, and the Deep Mantle, Int. Geophys. Ser., vol. 63, San Diego: Academic Press, 1996.Google Scholar
  22. Olsen, N., Luhr, H., Sabaka, T.J., Mandea, M., Rother, M., Toffner-Clausen, L., and Choi, S., CHAOS—a model of the Earth’s magnetic field derived from CHAMP, Orsted, and SAC-C magnetic satellite data, Geophys. J. Int., 2006, vol. 166, pp. 67–75. CrossRefGoogle Scholar
  23. Olsen, N., Mandea, M., Sabaka, T.J., and Toffner-Clausen, L., CHAOS-2—a geomagnetic field model derived from one decade of continuous satellite data, Geophys. J. Int., 2009, vol. 179, no. 3, pp. 1477–1487.CrossRefGoogle Scholar
  24. Olsen, N., Mandea, M., Sabaka, T.J., and Toffner-Clausen, L., The CHAOS-3 geomagnetic field model and candidates for the 11th generation IGRF, Earth, Planets Space, 2010, vol. 62, no. 1, doi 10.5047/eps.2010.07.003Google Scholar
  25. Olsen N., Hulot G., Lesur V., Finlay C.C., Beggan C., Chulliat A., Friis-Christensen E., Sabaka T.J., Floberghagen, R., Haagmans, R., Kotsiaros, S., Luhr, H., Toffner-Clausen, L., and Vigneron, P., The Swarm initial field model for the 2014 geomagnetic field, Geophys. Rev. Lett., 2015, vol. 42, no. 4, pp. 1092–1098. doi 10.1002/ 2014GL062659CrossRefGoogle Scholar
  26. Rangarajan, G.K., Indices of geomagnetic activity, in Geomagnetism, Jacobs, J.A., Ed., London: Academic Press, 1989, vol. 2, pp. 323–384.Google Scholar
  27. Rangarajan, G.K. and Iyemori, T., Time variations of geomagnetic activity indices Kp and Ap: an update, Ann. Geophys., 1997, vol. 15, no. 10, pp. 1271–1290.CrossRefGoogle Scholar
  28. Samarskii, A.A. and Gulin, A.V., Chislennye metody: Uchebn. posobie dlya VUZov (Numerical Methods: A University Textbook), Moscow: Nauka. Gl. red. fiz-mat. lit, 1989.Google Scholar
  29. Soloviev, A., Bogoutdinov, S., Gvishiani, A., Kulchinskiy, R., and Zlotnicki, J., Mathematical tools for geomagnetic data monitoring and the INTERMAGNET Russian segment, Data Sci. J., 2013, vol. 12, pp. WDS114–WDS119. doi 10.2481/dsj.WDS-019CrossRefGoogle Scholar
  30. Soloviev, A., Agayan, S., and Bogoutdinov, S., Estimation of geomagnetic activity using measure of anomalousness, Ann. Geophys., 2016, vol. 59, no. 6, doi 10.4401/ag-7116Google Scholar
  31. Soloviev, A., Chulliat, A., and Bogoutdinov, S., Detection of secular acceleration pulses from observatory data, Phys. Earth Planet. Inter., 2017, vol. 270, pp. 128–142. doi 10.1016/j.pepi.2017.07.005CrossRefGoogle Scholar
  32. St-Louis, B., INTERMAGNET Technical Reference Manual, Version 4.6, 2012.Google Scholar
  33. Thompson, A.W.P. and Lesur, V., An improved geomagnetic data selection algorithm for global geomagnetic field modeling, Geophys. J. Int., 2007, vol. 169, no. 3, pp. 951–963. CrossRefGoogle Scholar
  34. USA National Oceanic and Atmospheric Administration. National Centers for Environmental Information. Enhanced Magnetic Model. Scholar
  35. van der Waerden, B.L. Mathematische Statistik, Berlin: Springer, 1957.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Geophysical CenterRussian Academy of SciencesMoscowRussia
  2. 2.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  3. 3.Department of GeologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations