Izvestiya, Physics of the Solid Earth

, Volume 54, Issue 2, pp 310–329 | Cite as

Mesozoic–Cenozoic Climate and Neotectonic Events as Factors in Reconstructing the Thermal History of the Source-Rock Bazhenov Formation, Arctic Region, West Siberia, by the Example of the Yamal Peninsula

  • V. I. IsaevEmail author
  • A. A. Iskorkina
  • G. A. Lobova
  • V. I. Starostenko
  • S. A. Tikhotskii
  • A. N. Fomin


Schemes and criteria are developed for using the measured and modeled geotemperatures for studying the thermal regime of the source rock formations, as well as the tectonic and sedimentary history of sedimentary basins, by the example of the oil fields of the Yamal Peninsula. The method of paleotemperature modeling based on the numerical solution of the heat conduction equation for a horizontally layered solid with a movable upper boundary is used. The mathematical model directly includes the climatic secular trend of the Earth’s surface temperature as the boundary condition and the paleotemperatures determined from the vitrinite reflectance as the measurement data. The method does not require a priori information about the nature and intensities of the heat flow from the Earth’s interior; the flow is determined by solving the inverse problem of geothermy with a parametric description of the of the sedimentation history and the history of the thermophysical properties of the sedimentary stratum. The rate of sedimentation is allowed to be zero and negative which provides the possibility to take into account the gaps in sedimentation and denudation. The formation, existence, and degradation of the permafrost stratum and ice cover are taken into account as dynamical lithological–stratigraphic complexes with anomalously high thermal conductivity. It is established that disregarding the paleoclimatic factors precludes an adequate reconstruction of thermal history of the source-rock deposits. Revealing and taking into account the Late Eocene regression provided the computationally optimal and richest thermal history of the source-rock Bazhenov Formation, which led to more correct volumetric–genetic estimates of the reserves. For estimating the hydrocarbon reserves in the land territories of the Arctic region of West Siberia by the volumetric–genetic technique, it is recommended to use the Arctic secular trend of temperatures and take into account the dynamics of the Neoplesitocene permafrost layers 300–600 m thick. Otherwise, the calculated hydrocarbon reserves could be underestimated by up to 40%.


paleoclimate inversion tectonics geothermal regime Bazhenov Formation deposits hydrocarbon reserves Yamal Peninsula 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreev, A.A., Forman, S.L., Ingylfsson, Y., and Manley, W.F., Middle Weichselian environments on western Yamal Peninsula, Kara Sea, based on pollen records, Quat. Res, 2006, vol. 65, p. 275.Google Scholar
  2. Belyaev, S.Yu., Gus’kov, S.A., Volkova, V.S., and Istomin, A.V., The history of the tectonic development of the Arctic regions of West Siberian syneclise in the Cenozoic, in Interexpo Geo-Sibir’ (Interexpo Geo Siberia), 2013, vol. 2, no. 1. Scholar
  3. Bogachev, S.F. Gravity survey in combination with geological and seismic study of the Nyurol’ka depression in prospecting for oil and gas in the Paleozoic deposits, Cand. Sci. (Geol.-Mineral.) Dissertation, Tomsk: Tomsk Polytechnic Institute, 1987.Google Scholar
  4. Burshtein, L.M., Zhidkova, L.V., Kontorovich, A.E., and Melenevskii, V.N., Catagenesis model of organic matter by the example of the Bazhenovskaya formation, Geol. Geofiz., 1997, vol. 38, no. 6, pp. 1070–1078.Google Scholar
  5. Connan, J., Time-temperature relation in oil genesis, Am. Assoc. Pet. Geol. Bull., 1974, vol. 5, pp. 2516–2521.Google Scholar
  6. Databases of the VSEGEI Federal geological maps. Map of the Pre-Quaternary formations R(40–41, R-43, 44(45). 2016. May 6, 2017.Google Scholar
  7. Duchkov, A.D., Galushkin, Yu.I., Smirnov, L.V., and Sokolova, L.S., Evolution of the temperature field of the West Siberian Plate sedimentary cover, Geol. Geofiz., 1990, no. 10, pp. 51–60.Google Scholar
  8. Duchkov, A.D., Sokolova, L.S., Ayunov, D.E., and Yan, P.A., Thermal conductivity of the Bazhenovo Formation rocks in the Salym area (West Siberian plate), Rus. Geol. Geophys., 2016, vol. 57, no. 7, pp. 1078–1089.CrossRefGoogle Scholar
  9. Ermakov, V.I. and Skorobogatov, V.A., Teplovoe pole i neftegazonosnost’ molodykh plit SSSR (Thermal Field and Oiland-Gas Bearing Capacity of the Young Plates in the USSR), Moscow: Nedra, 1986.Google Scholar
  10. Fomin, A.N., Katagenez organicheskogo veshchestva i neftegazonosnost’ mezozoiskikh i paleozoiskikh otlozhenii Zapadno-Sibirskogo megabasseina (Catagenesis of the Organic Matter and the Oil-and-Gas Bearing Capacity of the Mesozoic and Paleozoic Deposits of the West Soberian Megadepression), Novosibirsk: INGG SO RAN, 2011.Google Scholar
  11. Galushkin, Yu.I., Modelirovanie osadochnykh basseinov i otsenka ikh neftegazonosnosti (Sedimentary Basin Modeling and Estimation of their Oil-and-Gas Bearing Capacity), Moscow: Nauchnyi Mir, 2007.Google Scholar
  12. Galushkin, Yu.I. and Smirnov, Ya.B., Thermal history of sedimentary basins: express methods for heat flux estimation, Geol. Geofiz., 1987, no. 11, pp. 105–112.Google Scholar
  13. Galushkin, Y.I., Sitar, K.A., and Kunitsyna, A.V., Numerical modeling of the organic matter transformation in the sedimentary rocks of the Northeastern Sakhalin shelf, Oceanology, 2011, vol. 51, no. 3, pp. 491–501.CrossRefGoogle Scholar
  14. Gavrilov, V.L. and Galushkin, Yu.I., Geodynamicheskii analiz neftegazonosnykh basseinov (basseinovoe modelirovanie) (Geodynamic Analysis of Oil-and-Gas Bearing Basins (Basin Modeling)), Textbook for University Students, Moscow: Nedra, 2010.Google Scholar
  15. Gol’bert, A.V., Osnovy regional’noi paleoklimatologii (Introduction into Regional Paleoclimatology), Moscow: Nedra, 1987.Google Scholar
  16. Gus’kov, S.A. and Volkova, V.S., History of geological development of the Arctic regions of West Siberian geosynmeclise in the Cenozoic, in Interekspo Geo-Sibir’ (Interexpo GeoSiberia), 2014, vol. 2, no. 2. Scholar
  17. Hantschel, T. and Kauerauf, A.I., Fundamentals of Basin and Petroleum Systems Modeling, Heidelberg: Springer, 2009.Google Scholar
  18. Harland, W.B., Cox, A.V., Llewellyn, P.G., Picton, C.A.G., Smith, A.G., and Walters, R.W., A Geologic Time Scale, Cambridge, U.K.: Cambridge Univ. Press, 1982.Google Scholar
  19. Hunt, J.M., Petroleum Geochemistry and Geology, San Francisco: Freeman, 1979.Google Scholar
  20. Isaev, V.I., Paleotemperature modelling of the sedimentary section, and oil-and-gas generation, Geol. Pac. Ocean, 2004, vol. 23, no. 5, pp. 101–115.Google Scholar
  21. Isaev, V.I., Interpretatsiya dannykh gravimetrii i geotermii pri prognozirovanii i poiskakh nefti i gaza: uchebnoe posobie (Interpretation of Gravimetric and Geothermal Data in Forecasting and Prospecting for Oil and Gas: A Textbook), Tomsk: TPU, 2010.Google Scholar
  22. Isaev, V.I., Interpretation of high-accuracy gravity exploration data by mathematic programming, Russ. J. Pac. Geol., 2013, vol. 7, no. 2, pp. 92–106.CrossRefGoogle Scholar
  23. Isaev, V.I. and Fomin, A.N., Loki of generation of Bazhenov-and Togur-type oils in the southern Nyurol’ka megadepression, Russ. Geol. Geophys., 2006, vol. 47, no. 6, p. 734.Google Scholar
  24. Isaev, V.I., Gulenok, R.Yu., Veselov, O.V., Bychkov, A.V., and Soloveichik, Yu.G., Komp’yuternaya tekhnologiya kompleksnoi otsenki neftegazovogo potentsiala osadochnykh basseinov (Computerized technology for integrated evaluation of oil and gas potential of sedimentary basins), Geol. Nefti Gaza, 2002, no. 6, pp. 48–54.Google Scholar
  25. Isaev, V.I., Lobova, G.A., Royak, M.E., and Fomin, A.N., Oil and gas presence in the central part of the Yugorskii dome, Geofiz. Zh., 2009, vol. 31, no. 2, pp. 15–46.Google Scholar
  26. Isaev, V.I., Korzhov, Yu.V., Lobova, G.A., and Popov, S.A., Neftegazonosnost’ Dal’nego Vostoka i Zapadnoi Sibiri po dannym gravimetrii, geotermii i geokhimii (Oil and Gas Presence in the Far East and West Siberia According to Gravity, Geothermy, and Geochemistry Data), Tomsk: TPU, 2011.Google Scholar
  27. Isaev, V.I., Lobova, G.A., and Osipova, E.N., The oil and gas contents of the Lower Jurassic and Achimovka reservoirs of the Myurol’ka megadepression, Russ. Geol. Geophys., 2014, vol. 55, pp. 1418–1428.CrossRefGoogle Scholar
  28. Isaev, V.I., Lobova, G.A., Mazurov, A.K., Fomin, A.N., and Starostenko, V.I., Zoning of the Bazhenov Formation and Neocomian clinoforms by the reserves density of the shale oil and primarily accumulated oil by the example of the Nyurol’ka megadepression, Geofiz. Zh., 2016a, vol. 38, no. 3, pp. 29–51.Google Scholar
  29. Isaev, V.I., Iskorkina, A.A., Lobova, G.A., and Fomin, A.N., Paleoclimate factors in reconstructing the thermal history of the Bazhenov and Togur formation in the southeastern West Siberia, Geofiz. Zh., 2016b, vol. 38, no. 4, pp. 3–25.Google Scholar
  30. Isaev, V.I., Lobova, G.A., Osipova, E.N., and Sungurova, O.G., Zoning the megadepressions of the Tomsk region by shale-oil reserves density, Neftegaz. Geol. Teor. Prakt., 2016c, vol. 11, no. 1, pp. 1–21. Scholar
  31. Isaev, V.I., Iskorkina, A.A., Kolchin, A.K., Lobova, G.A., and Stotskii, V.V., Geothermy as a method of geophysical prospecting and its geological interpretation by the example of the Arctic regions of the Yamal Peninsula, Voprosy teorii i praktiki geologicheskoi interpretatsii geofizicheskikh polei: materialy 44-i sessii Mezhdunarodnolo seminara im. D.G. Uspenskogo (Questions of the Theory and Practice of Geological Interpretation of the Geophysical Fields: Proc. 44th Session of International Workshop Named After D.G. Uspenskii), Moscow, January 23–27, 2017, Moscow: IFZ RAN, 2017, pp. 135–140. Scholar
  32. Iskorkina, A.A., Paleoclimatic factors in reconstructing the thermal history of the source-rock Bazhenov Formation in the Arctic region of West Siberia, Izv. Tomsk. Politekh. Univ., Ser. Inzhiniring Georesursov, 2016, vol. 327, no. 8, pp. 59–73.Google Scholar
  33. Ivanov, N.S. and Gavril’ev, R.I., Teplofizicheskie svoistva merzlykh gornykh porod (Thermophysical Properties of Frozen Rocks), Moscow: Nauka, 1965.Google Scholar
  34. Khutorskoi, M.D. and Podgornyi, L.V., Geothermyof the Arctic basin—problems and solutions: I. Thermal field and oil-and-gas-bearing capacity of the Arctic basin shelf, Monit. Nauka Tekhnol., 2010, vol. 2, no. 1, pp. 6–26.Google Scholar
  35. Khutorskoi, M.D., Podgornyi, L.V., Suprunenko, O.I., Kim, B.I., and Chernykh, A.A., Thermotomographic model and oil-and-gas forecasting for the sedimentary cover of the Laptev Sea shelf, Dokl. Earth Sci., 2011, vol. 440, no. 2, pp. 1381–1386.CrossRefGoogle Scholar
  36. Khutorskoi, M.D., Akhmedzyanov, V.R., Ermakov, A.V., Leonov, Yu.G., Podgornykh, L.V., Polyak, B.G., Sukhikh, E.A., and Tsybulya, L.A., Geotermiya arkticheskikh morei (Geothermy of the Arctic Seas), Moscow: GEOS, 2013.Google Scholar
  37. Kienast, F.W., Sigert, C., and Mai, D.-H., Climatic implications of Late Quaternary plant macrofossil assemblages from the Taymyr Peninsula, Siberia, Global Planet. Change, 2001, vol. 31, nos. 1–4, pp. 263–280.Google Scholar
  38. Kontorovich, A.E., The problems of reindustrialization of the oil and gas complex in Russia, Neft. Khoz., 2016, no. 3, pp. 14–15.Google Scholar
  39. Kontorovich, A.E., Parparova, G.M., and Trushkov, P.A., Metamorphosis of the organic matter and some questions of oil and gas bearing capacity by the example of Mesozoic deposits of the West Siberian lowland, Geol. Geofiz., 1967, no. 2, pp. 16–29.Google Scholar
  40. Kontorovich, A.E., Burshtein, L.M., Malyshev, N.A., Safronov, P.I., Gus’kov, S.A., Ershov, S.V., Kazanenkov, V.A., Kim, N.S., Kontorovich, V.A., Kostyreva, E.A., Melenevsky, V.N., Livshits, V.R., Polyakov, A.A., and Skvortsov, M.B., Historical-geological modeling of hydrocarbon generation in the Mesozoic–Cenozoic sedimentary basin of the Kara Sea (basin modeling), Russ. Geol. Geophys., 2013, vol. 54, no. 8, p. 1179–1226.Google Scholar
  41. Kurchikov, A.R., The geothermal regime of hydrocarbon pools in West Siberia, Russ. Geol. Geophys., 2001, vol. 42, nos. 11–12, pp. 678–689.Google Scholar
  42. Kurchikov, A.R. and Stavitskii, B.P., Geotermiya neftegazonosnykh oblastei Zapadnoi Sibiri (Geothermy of the Oil-and-Gas Bearing Regions in West Siberia), Moscow: Nedra, 1987.Google Scholar
  43. Kurchikov, A.R. and Borodkin, V.N., Thermobaric and paleotectonic characteristic of the clinoform formations of the Achimovskaya stratum of the northern West Siberia in the context of the presence of oil and gas, Gorn. Vedomosti, 2010, no. 3, pp. 16–35.Google Scholar
  44. Lobova, G.A., Popov, S.A., and Fomin, A.N., Localizing the prognostic resources of oil of the Jurassic–Cretaceous oil and gas complexes of the Ust’-Tym megadepression, Neft. Khoz., 2013, no. 2, pp.36–40.Google Scholar
  45. Morozov, N.V., Belen’kaya, I.Yu., and Zhukov, V.V., 3D modeling of the Bazhenovskaya Formation hydrocarbon systems: detailing the forecast of the physicochemical properties of hydrocarbons, PRONEFT’, 2016, vol. 1, pp. 38–45.Google Scholar
  46. Nelskamp, S., Donders, T., van Wess, J.-D., and Abbink, O., Influence of surface temperatures on source rock maturity:an example from the Russian Arctic, Russ. Oil Gas Technol. Mag., 2014, no. 18, pp. 26–35.Google Scholar
  47. Nesterov, I.I., Problemy geologii nefti i gaza vtoroi poloviny XX veka: izbrannye trudy (Problems of Oil and Gas Geology in the Second Half of XX Century; Selected Papers), Novosibirsk: SO RAN, 2007.Google Scholar
  48. Osipova, E.N., Lobova, G.A., Isaev, V.I., and Starostenko, V.I., Neftegazonosnost’ nizhnemelovykh rezervuarov Nyurol’skoi megavpadiny (Oil and gas bearing capacity of the Lower Cretaceous reservoirs of the Nyurol’ka megadepression), Izv. Tomsk. Politekh. Univ., 2015, vol. 326, no. 1, pp. 14–33.Google Scholar
  49. Popov, S.A. and Isaev, V.I., Modeling the naftidogenesis of South Yamal, Geofiz. Zh., 2011, vol. 33, no. 2, pp. 80–104.Google Scholar
  50. Popov, Yu.A., Popov, E.Yu., Chekhonin, E.M., Gabova, A.V., Romushkevich, R.A., Spasennykh, M.Yu., and Zagranovskaya, D.E., Studying the Bazhenov Formation by continuous profiling of thermal properties along the core, Neft. Khoz., 2017, no. 3, pp. 22–27.Google Scholar
  51. Reshenie 6-go Mezhvedomstvennogo stratigraficheskogo soveshchaniya po rassmotreniyu i prinyatiyu utochnennykh stratigraficheskikh skhem mezozoiskikh otlozhenii Zapadnoi Sibiri (The Decision of the 6th Inter-Departmental Stratigraphic Conference on Considering and Accepting the Refined Stratigraphic Schemes for the Mesozoic of West Siberia), Novosibirsk, 2003, Novosibirsk: SNIIGGiMS, 2004.Google Scholar
  52. Skachek, K.G., Larichev, A.I., Bostrikov, O.I., Brylina, A.V., and Vidik, S.V., Oil and Gas Content Prospects of the Bazhenov Formation in the central part of the Latitudinal Ob’ Region, in Puti realizatsii neftegazovogo i rudnogo potentsiala Khanty-Mansiiskogo avtonomnogo okruga—Yugry. XV nauchno-prakticheskaya konferentsiya (The Ways for Implementing the Hydrocarbon and Ore Potential in the Khanty–Mansi Autonomous Okrug—Yugra. XV Scientific and Practical Conference), vol. 1, Shpil’man, A.V., and Volkov, V.A., Eds., Khanty-Mansiisk: IzdatNaukServis, 2012, pp. 105–113.Google Scholar
  53. Starostenko, V.I., Ustoichivye chislennye metody v zadachakh gravimetriii (Stable Numerical Methods in the Gravimetry Problems), Kiev: Nauk. Dumka, 1978.Google Scholar
  54. Stratigraficheskii kodeks Rossii. Izdanie tret’e (Stratigraphic Code of Russia. Third Ed.), St. Petersburg: VSEGEI, 2006.Google Scholar
  55. Stratigrafiya neftegazonosnykh basseinov Sibiri. Kn. 9: Kainozoi Zapadnoi Sibiri (Stratigraphy of the Oil and Gas Bearing regions of Siberia, vol. 9: Cenozoicof the West Siberia), Volkova, V.S., Eds., Novosibirsk: Izd-vo SO RAN, 2002, p. 246.Google Scholar
  56. Tikhotskii, S.A., Fokin, I.V., and Schur, D.Yu., Traveltime seismic tomography with adaptive wavelet parameterization, Izv., Phys Solid Earth, 2011, vol. 47, no. 4, pp. 326–344.CrossRefGoogle Scholar
  57. Tissot, B., Preliminary data on the mechanisms and kinetics of the formation of petroleum in sediments. Computer simulation of a reaction flowsheet, Oil Gas Sci.Technol.— Rev. IFP, 2003, vol. 58, no. 2, pp. 183–202.CrossRefGoogle Scholar
  58. Vassoevich, N.B., Sediment-migration theory of oil origin: historical review and state of the art, Izv. Akad. Nauk SSSR, Ser. Geol., 1967, no. 11, pp. 135–156.Google Scholar
  59. Volkova, V.S., Paleogene and Neogene stratigraphy and paleotemperature trend of West Siberia (from palynological data), Russ. Geol. Geophys., 2011, vol. 52, no. 7, pp. 709–716.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Isaev
    • 1
    Email author
  • A. A. Iskorkina
    • 1
  • G. A. Lobova
    • 1
  • V. I. Starostenko
    • 2
  • S. A. Tikhotskii
    • 3
  • A. N. Fomin
    • 4
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Subbotin Institute of GeophysicsNational Academy of Sciences of UkraineKievUkraine
  3. 3.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  4. 4.Trofimuk Institute of Petroleum Geology and Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations