Izvestiya, Physics of the Solid Earth

, Volume 53, Issue 5, pp 795–802 | Cite as

The nature of magnetic anomalies in subduction zones

  • A. M. Gorodnitskii
  • Yu. V. Brusilovskii
  • A. N. Ivanenko
  • K. V. Popov
  • N. A. Shishkina
Article
  • 46 Downloads

Abstract

The analysis of the magnetic survey data suggests the presence of a frontal zone of intense magnetic anomalies in a number of the Pacific island-arc systems. These zones with amplitudes of 100–300 nT are observed within the Kuril–Kamchatka and Aleutian island arc systems, in Southern and Central America, and Alaska. As demonstrated by the solution of the inverse problem and petromagnetic investigation of the rocks, these zones are presumably related to the serpentinite bodies which form as a result of the hydration of the upper mantle peridotites by the oceanic water penetrating through a system of cracks and fractures into the subducting slab at its bend. The rock magnetic studies show that magnetite is the main carrier of magnetization in these serpentinite bodies. Hydration of the subducting slab also causes hydration of the mantle rocks of the overriding plate with the formation of the magnetized serpentinite wedge. The decompaction of ultrabasic rocks under hydration is marked by a decrease in the gravity field and velocities of elastic waves. As the subducting plate loses water, it becomes embrittled and becomes the localization region for the epicenters of the strongest earthquakes. Magnetic survey can be used for revealing the potential sources of catastrophic earthquakes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazylev, B.A., Awaruite containing mineral association abundance in peridotite of the fault zone 15°20' (the Atlantic Ocean) as one of the manifestations of oceanic metamorphism, Ros. Zh. Nauk Zemle, 2000, vol. 2, no. 3/4, pp. 279–293.Google Scholar
  2. Bazylev, B.A., Popov, K.V., and Shcherbakov, V.P., Petrographic features of oceanic peridotites as reflected by their magnetic characteristics, Russ. J. Earth Sci, 2002, vol. 4, pp. 211–223. doi 10.2205/2002ES000087CrossRefGoogle Scholar
  3. Bazylev, B.A., Ledneva, G.V., Kononkova, N.N., and Ishiwatari, A., High-pressure ultramafics in the lower crustal rocks of the Pekul’ney complex, Central Chukchi Peninsula: 1. Petrography and mineralogy, Petrology, 2013, vol. 21, no. 3, pp. 221–248. doi 10.1134/S0869591113030028CrossRefGoogle Scholar
  4. Blakely, R., Brocher, T., and Wells, R., Subduction-zone magnetic anomalies and implications for hydrated forearc mantle, Geology, 2005, vol. 33, no. 6, pp. 445–448. doi 10.1130/G21447CrossRefGoogle Scholar
  5. Bostock, M., Hyndman, R., Rondenay, S., and Peacock, S., An inverted continental Moho and serpentinization of the forearc mantle, Nature, 2002, vol. 417, no. 6888, pp. 536–538.CrossRefGoogle Scholar
  6. Brusilovskiy, Yu.V., Ivanenko, A.N., Zhukovin, A.Yu., and Tsovbun, N.M., Geomagnetic studies of the central Kuril–Kamchatka Islan arc, Tikhookean. Geol., 2012, vol. 31, no. 6, pp. 114–120.Google Scholar
  7. Dunlop, D.J. and Prevot, M., Magnetic properties and opaque mineralogy of drilled submarine intrusive rocks, Geophys. J. R. Astron. Soc., 1982, vol. 69, no. 3, pp. 763–802. doi 10.1111/j.1365-246X.1982.tb02774.xCrossRefGoogle Scholar
  8. Kirby, S., Engdahl, E., and Denlinge, R., Intermediatedepth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs, in Subduction: Top to Bottom, ebout, G.E., Scholl, D.W., Kirby, S.H., and Platt, J.P., Eds., American Geophysical Union Geophysical Monograph Series, vol. 96, Washington, DC: American Geophysical Union, 1996, pp. 195–214.Google Scholar
  9. Kuznetsov, Yu.A. and Pecherskii, D.M., Metodicheskie rekomendatsii po izucheniyu petromagnitnykh i magnitnykh svoistv porod vskrytykh svekhglubokimi skvazhinami (Recommended Practice for Studying Petromagnetic and Magnetic Properties of the Rocks Penetrated by Deep Wells), Tver: NPGP GERS, 1992.Google Scholar
  10. Lobkovskii, L.I., Geodinamika zon spredinga, subduktsii i dvukh„yarusnaya tektonika plit (Geodynamics of the Spreading Zones and Subduction Zones, and Two-Level Plate Tectonics), Moscow: Nauka, 1988.Google Scholar
  11. Maekawa, H., Yamanoto, K., Teruaki, I., Ueno, T., and Osada, Y., Serpentinite sea mounts and hydrated mantle wedge in the Izu-Bonin and Mariana forearc regions, Bull. Earthquake Res. Inst., Univ. Tokyo, 2001, vol. 76, pp. 355–366.Google Scholar
  12. Nazarova, E.A., Wasilewski, P.J., and Dick, H.J., Magnetic study of serpentinized harzburgites from the Islas Orcadas Fracture Zone, Mar. Geophys. Res., 2000, vol. 21, no. 5, pp. 475–488. doi 10.1023/A:1026550011802CrossRefGoogle Scholar
  13. Nekrasov, G.E. and Zhuravlev, D.Z., Sm–Nd isotope system in lower crustal rocks of the Southern Pekul’nei ridge (Late Mesozoides of Chukotka), Dokl. Earth Sci., 2004, vol. 372, no. 4, pp. 732–736.Google Scholar
  14. Nguyen Thi Kim Thoa and Pecherskii, D.M., Serpentinites as a probable source of linear magnetic anomalies, Izv. Akad. Nauk SSSR, Ser. Geol., 1989, no. 1, pp.61–67.Google Scholar
  15. Okubo, Y. and Matsunaga, T., Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity, J. Geophys. Res., 1994, vol. 99, no. B11, pp. 22363–22371.CrossRefGoogle Scholar
  16. Oleskevich, D., Hyndman, R., and Wang, K., The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile, J. Geophys. Res.: Solid Earth, 1999, vol. 104, no. B7, pp. 14965–14991.CrossRefGoogle Scholar
  17. Piip, V.B. and Rodnikov, G., The Sea of Okhotsk crust from deep seismic sounding data, Russ. J. Earth Sci., 2004, vol. 6, pp. 1–14.CrossRefGoogle Scholar
  18. Popov, K.V. and Shcherbakov, V.P., Petromagnetic characteristics of the oceanic crustal rocks. Serpentinites, in Priroda magnitnykh anomalii i stroenie okeanicheskoi kory (The Nature of Magnetic Anomalies and the Structure of the Oceanic Crust), Moscow: VNIRO, 1996, pp. 82–132.Google Scholar
  19. Popov, K.V., Bazylev, B.A., Shcherbakov, V.P., and Gapeev, A.K., Comparison between the magnetic and petrological characteristics of the peridotites from the Corringe Ridge and the peridotites from the Mid-Oceanic ridges, Oceanology, 2011, vol. 51, no. 1, pp. 157–169.CrossRefGoogle Scholar
  20. Popov, K.V., Bazylev, B.A., Shcherbakov, V.P., Tsel’ movich, V.A., and Kononkova, N.N., Thermomagnetic analysis of ultramafic rocks: a case study of dunite from the Pekul’ney Complex, Chukotka NE Russia, Russ. J. Earth Sci., 2015, vol. 15, pp. 1–10. ES1003. doi 10.2205/2015ES000547CrossRefGoogle Scholar
  21. WGM2012 Earth’s gravity anomalies. http://bgi.omp.obsmip.fr/data-products/Grids-and-models/wgm2012.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. M. Gorodnitskii
    • 1
  • Yu. V. Brusilovskii
    • 1
  • A. N. Ivanenko
    • 1
  • K. V. Popov
    • 1
  • N. A. Shishkina
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations