Izvestiya, Physics of the Solid Earth

, Volume 53, Issue 5, pp 677–694 | Cite as

Paleomagnetism of the Upper Paleozoic of the Novaya Zemlya Archipelago

  • V. V. Abashev
  • D. V. Metelkin
  • N. E. Mikhal’tsov
  • V. A. Vernikovsky
  • N. Yu. Matushkin


The rock magnetic and paleomagnetic results from the Upper Paleozoic sedimentary sequences composing the isles of the Novaya Zemlya Archipelago are presented. The recorded temperature dependences of the magnetic susceptibility, the magnetic hysteresis parameters, and the results of the first-order reversal curve (FORC) measurements suggest the presence of single-domain or pseudo-single-domain magnetite and hematite grains in the rocks. The Upper Paleozoic deposits overall are promising for unraveling the tectonic evolution of the Barents–Kara region. Together with the rock magnetic data, the positive fold and reversal tests testify to the primary origin of the indentified magnetization components. However, the interpretation of the paleomagnetic data should take into account the probable inclination shallowing. New substantiation is offered for the paleomagnetic poles for Early Devonian and Late Permian. For the first time, paleomagnetic constraints are obtained for the Late Carboniferous boundary. It is shown that the Early Cimmerian deformation stage within the Paikhoi–Novaya Zemlya region is associated with the sinistral strike slip displacement along the Baidaratskii suture during which the internal structure of the Southern Novaya Zemlya segment could undergo shear in addition to the nappe-thrust transformations. The Northern Novaya Zemlya segment, which is shifted northwest with respect to the Southern segment, was deformed in the thrusting mode with an overall clockwise rotation of this segment relative to the East European Craton.


rock magnetism paleomagnetism Paleozoic paleomagnetic pole magnetotectonics shear deformations Barents–Kara shelf Novaya Zemlya Archipelago the Arctic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alva-Valdivia, L.M., Goguitchaichvili, A., Grajales, M., Flores de Dios, A., Urrutia-Fucugauchi, J., Rosales, C., and Morales, J, Further constraints for Permo–Carboniferous magnetostratigraphy: case study of the sedimentary sequence from San Salvador–Patlanoaya (Mexico), Comptes Rendus Geoscience, 2002, vol. 334, no. Iss 11, pp. 811–817.CrossRefGoogle Scholar
  2. Basov, V.A., Vasilenko, L.V., Viskunova, K.G., Korago, E.A., Korchinskaya, M.V., Kupriyanova, N.V., Povysheva, L.G., Preobrazhenskaya, E.N., Pchelina, T.M., Stolbov, N.M., Suvorova, E.B., Suprunenko, O.I., Suslova, V.V., Ustinov, N.V., Ustritskii, V.I., et al., L.A., Evolution of sedimentation settings in the Barents–Northern Kara paleobasin in the Phanerozoic, Neftegaz. Geol. Teor. Prakt., 2009, vol. 4, no. 1, pp. 1–44.Google Scholar
  3. Cherkesov, O.V. and Kasatkina, E.A., Permina/Triassic boundary in Novaya Zemlya, in Geologiya Yuzhnogo ostrova Novoi Zemli (Geology of the Novaya Zemlya Southern Island), Leningrad: PGO “Sevmorgeologiy,” 1982, pp. 122–126.Google Scholar
  4. Cherkesov, O.V. and Makarov, K.K., Combined Upper Permian and Lower Triassic redbed deposits on the Gusinaya Zemlya Peninsula, in Geologiya Yuzhnogo ostrova Novoi Zemli (Geology of the Novaya Zemlya Southern Island), Leningrad: PGO “Sevmorgeologiya,” 1982, pp. 47–57.Google Scholar
  5. Chernova, A.I., Metelkin, D.V., Matushkin, N.Yu., Vernikovskii, V.A., and Travin, A.V., Geological structure and paleomagnetism of Jeanette Island ostrova Zhannetty (De Long Archipelago, East Arctic, Rus. Geol. Geophys., 2017a, no. 9 (in press).Google Scholar
  6. Chernova, A.I., Metelkin, D.V., Matushkin, N.Yu., Vernikovskii, V.A., and Travin, A.V., Paleomagnetism and Geochronology of volcanic-sedimentary rocks on Henrietta Island (De Long Archipelago, Arctic Ocean), Dokl. Earth Sci., 2017b (in press).Google Scholar
  7. Cocks, L.R.M. and Torsvik, T.H., The Paleozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins, Earth-Sci. Rev., 2011, vol. 106, pp. 1–51.CrossRefGoogle Scholar
  8. Day, R., Fuller, M., and Schidt, V.A., Hysteresis properties of titanomagnetites: grain size and compositional dependence, Phys. Earth Planet. Inter., 1977, no. 13, pp. 260–267.CrossRefGoogle Scholar
  9. Dunlop, D.J., Theory and application of the Day plot (M rs/M s versus H cr/H c): 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 2002, vol. 107, no. B3, 2056, pp. EPM 4-1–EPM 4–22.Google Scholar
  10. Enkin, R.J., A Computer Program Package for Analysis and Presentation of Paleomagnetic Data, Sidney, British Columbia: Pacific Geoscience Centre, Geological Survey of Canada, 1994.Google Scholar
  11. Enkin, R.J., The direction-correction tilt test: an all-purpose tilt/fold test for paleomagnetic studies, Earth Planet. Sci. Lett., 2003, vol. 212, pp. 151–166.CrossRefGoogle Scholar
  12. Gosudarstvennaya geologicheskaya karta Rossiiskoi federatsii. Masshtab 1: 1000000 (tret’e pokolenie). Seriya Severo-Karsko-Barentsevomorskaya. List T-41-44–mys Zhelaniya (State 1: 1000000 Geological Map of the Russian Federation (Third Generation). North Kara–Barents Sea Series. Sheet T41–44, Cape Zhelaniya)) St. Petersburg: VSEGEI, 2013.Google Scholar
  13. Gosudarstvennaya geologicheskaya karta Rossiiskoi federatsii. Masshtab 1: 1000000 (tret’e pokolenie). Seriya Severo-Karsko- Barentsevomorskaya. List R-39,40–o. Kolguev–prol. Karskie Vorota (State 1: 1000000 Geological Map of the Russian Federation (Third Generation). North Kara–Barents Sea Series. Sheet R-39,40, Kolguev Island–Kara Strait)), St. Petersburg: VSEGEI, 2014.Google Scholar
  14. Gurevich, E.A. and Slautsitais, I.P., Paleomagnetic section of the Upper Permian and Triassic deposits of the Novaya Zemlya Island, Izv. Akad. Nauk SSSR, Ser. Geol., 1984, no. 10, pp. 42–50.Google Scholar
  15. Harrison, R.J. and Feinberg, J.M., FORCinel: an improved algorithm for calculating first-order reversal curve distribution using locally weighted regression smoothing, Geochem. Geophys. Geosyst., 2008, vol. 9, no. 5.CrossRefGoogle Scholar
  16. Khain, V.E., Regional’naya geotektonika: Vneal’piiskaya Aziya i Avstraliya (Regional Geotectonics: Extra-Alpine Asia and Australia), Moscow: Nedra, 1979.Google Scholar
  17. Kirschvink, J.L., The least-square line and plane and the analysis of paleomagnetic data, Geophys. J. R. Astron. Soc., 1980, vol. 62, pp. 699–718.CrossRefGoogle Scholar
  18. Kodama, K.P., Paleomagnetism of Sedimentary Rocks: Process and Interpretation, Bethlehem, Pennsylvania, USA: Blackwell, 2012.CrossRefGoogle Scholar
  19. Korago, E.A., Kovaleva, G.N., Il’in, V.F., and Pavlov, L.G., Tektonika i metallogeniya rannikh kimmerid Novoi Zemli (Tectonics and Metallogeny of Early Kimmerides of Novaya Zemlya), St. Petersburg: Nedra, 1992.Google Scholar
  20. Korago, E.A. and Timofeeva, T.N., Magmatizm Novoi Zemli (v kontekste geologicheskoi istorii Barentsevo-Severokarskogo regiona) (Magmatism of Novaya Zemlya in the Context of Geological History of the Barents–North Kara Region), VNIIOkeanologiya Transactions, vol. 209, St. Petersburg: VNIIOkeanologiya, 2005.Google Scholar
  21. Kuznetsov, N.B., Soboleva, A.A., Udoratina, O.V., and Gertseva, M.V., Doordovikskie granitoidy Timano-Ural’skogo regiona i evolyutsiya Protouralid-Timanid (Pre-Ordovician Granitoids of the Timan-Uralianb Region and the Evolution of the Protouralides–Timanides), Syktyvkar: Geoprint, 2005.Google Scholar
  22. Kuznetsov, N.B., The Cambrian Pre-Uralide–Timanide orogen: structural evidence for its collisional origin, Dokl., Earth Sci., 2008, vol. 423, no. 2, pp. 1383–1387.CrossRefGoogle Scholar
  23. McElhinny, M.W., Statistical significance of the fold test in paleomagnetism, Geophys. J. R. Astron. Soc., 1964, vol. 8, pp. 338–340.CrossRefGoogle Scholar
  24. McFadden, P.L., A new fold test for paleomagnetic studies, Geophys. J. Int., 1990, vol. 103, pp. 163–169.CrossRefGoogle Scholar
  25. McFadden, P.L. and McElhinny, M.W., Classification of the reversal test in paleomagnetism, Geophys. J. Int., 1990, vol. 103, pp. 725–729.CrossRefGoogle Scholar
  26. Menning, M., Katzung, G., and Lutzner, H., Magnetostratigraphic investigation in the Rotliegendes (300–252 Ma) of Central Europe, Geol. Wiss. Berlin, 1988, vol. 16, pp. 1016–1063.Google Scholar
  27. Metelkin, D.V., Vernikovsky, V., Kazansky, A.Yu., Bogolepova, O.K., and Gubanov, A.P., Paleozoic history of the Kara microcontinent and its relation to Siberia and Baltica: paleomagnetism, paleogeography and tectonics, Tectonophysics, 2005, vol. 398, nos. 3–4, pp. 225–243.CrossRefGoogle Scholar
  28. Metelkin, D.V., Vernikovsky, V.A., Kazansky, A.Yu., and Wingate, M.T.D., Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence, Gondwana Res., 2010, vol. 18, nos. 2–3, pp. 400–419.CrossRefGoogle Scholar
  29. Metelkin, D.V., Vernikovsky, V.A., and Matushkin, N.Yu., Arctida between Rodinia and Pangea, Precambrian Res., 2015, vol. 259, pp. 114–129.CrossRefGoogle Scholar
  30. Metelkin, D.V., Vernikovsky, V.A., Tolmacheva, T.Yu., Matushkin, N.Yu., Zhdanova, A.I., and Pisarevsky, S.A., First paleomagnetic data for the New Siberian islands: implications for Arctic paleogeography, Gondwana Res., 2016, vol. 37, pp. 308–323.CrossRefGoogle Scholar
  31. Opdyke, N.D. and Channell, J.E.T., Magnetic Stratigraphy, New York: Academic, 1966.Google Scholar
  32. Paleomagnitnye napravleniya i paleomagnitnye polyusa. Dannye po SSSR. Materialy Mirovogo tsentra dannykh B (Paleomagnetic Directions and Paleomagnetic Poles: Data for USSR. World Database B), Khramov, A.N., Ed., Moscow, 1986.Google Scholar
  33. Pavlov, L.G., Burskii, A.Z., and Il’in, V.F., Geologicheskoe stroenie i poleznye iskopaemye yuzhnoi chasti arkhipelaga Novaya Zemlya (otchet o gruppovoi s”emke masshtaba 1: 200000) (Geological Structure and Minerals of the Southern Part of Novaya Zemlya Archipelago. The 1: 200000 Group Geological Survey Report), Lomonosov: AKGGE PGO Sevmorgeologiya, 1981.Google Scholar
  34. Pavlov, L.G., Trufanov, G.V., Nepomiluev, V.F., and Orgo, V.V., Komplekt kart geologicheskogo soderzhaniya masshtaba 1: 500000 and 1: 1000000 arh. Novaya Zemlya (Set of 1: 500000 and 1: 1000000 Maps on the Geological Aspects of Novaya Zemlya Archipelago), Lomonosov: PMGRE, 1999.Google Scholar
  35. Pogarskaya, I.A., Paleomagnetic study of the Middle Paleozoic rocks of Novaya Zemlya Island, Tezisy dokladov III Dal’nevostochnogo seminara po paleomagnetizmu (Abstracts of thr 3rd Far Eastern Workshop on Paleomagnetism), Magadan: SVKNII DVNTs ANSSSR, 1984, pp. 45–46.Google Scholar
  36. Pogarskaya, I.A. and Iosifidi, A.G., Paleomagnetic study of the Middle Paleozoic rocks from the Severnyi (Northern) Island of Novaya Zemlya, in Magnitostratigrafiya i paleomagnetizm osadochnykh i vulkanogennykh formatsii SSSR (Magnetostratigraphy and Paleomagnetism of Sedimentary and Volcanic Formations of the USSR), Leningrad: VNIGRI, 1986, pp. 33–48.Google Scholar
  37. Proskurnin, V.F., Vernikovsky, V.A., Metelkin, D.V., Petrushkov, B.S., Vernikovskaya, A.E., Gavrish, A.V., Bagaeva, A.A., Matushkin, N.Yu., Vinogradova, N.P., and Larionov, A.N., Rhyolite–granite association in the Central Taimyr zone: evidence of accretionary-collisional events in the Neoproterozoic, Rus. Geol. Geophys., 2014, vol. 55, no. 1, pp. 18–32.CrossRefGoogle Scholar
  38. Puchkov, V.N., Uralides and Timanides: Their Structural Relationship and Position in the Geologic History of the Ural-Mongolian Fold Belt, Rus. Geol. Geophys., 2003, vol. 44, nos. 1–2, pp. 27–38.Google Scholar
  39. Putevoditel’ ekspeditsii na Barentsevomorskoe poberezh’e arkhipelaga Novaya Zemlya (Travel Guide on the Expedition to the Barents Coast of Novaya Zemlya Archipelago), Sobolev, N.N., Ed., St. Petersburg: VSEGEI, 2014.Google Scholar
  40. Roberts, A.P., First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 2000, vol. 105, no. B12, pp. 28461–28475.CrossRefGoogle Scholar
  41. Roberts, A.P., Heslop, D., Zhao, X., and Pike, C.R., Understanding fine magnetic particle systems through use of first-order reversal curve diagrams, Rev. Geophys., 2014, vol. 52, pp. 557–602.CrossRefGoogle Scholar
  42. Samygin, S.G. and Burtman, V.S., Tectonics of the Ural Paleozoides in comparison with the Tien Shan, Geotectonics, 2009, vol. 43, no. 2, pp. 133–151.CrossRefGoogle Scholar
  43. Sharov, N.V., Mitrofanov, F.P., Verba, M.L., and Lillen, K., Stroenie litosfery rossiiskoi chasti Barentsevomorskogo regiona (The Structure of the Lithosphere in the Russian Part of Barents Region), Petrozavodsk: KarNTs RAN, 2005.Google Scholar
  44. Shatsillo, A.V., Interaction of Siberia and Baltica at the final stage of amalgamation of the Eurasian part of Pangea, Izv., Phys. Solid Earth, 2015, vol. 51, no. 2, pp. 300–314.CrossRefGoogle Scholar
  45. Sobolev, N.N., Conodonts from the Lower–Middle Devonian deposits of Novaya Zemlya, in Novaya Zemlya na rannikh etapakh geologicheskogo razvitiya (Novaya Zemlya at the Early Stages of Its Geological Evolution), Leningrad: PGO “Sevmorgeologiya,” 1984, pp. 58—86.Google Scholar
  46. Sobolev, N.N., Ustritskii, V.I., and Chernyak, G.E., The structure of the Paleozoic passive continental margin in Novaya Zemlya, in Geologicheskoe stroenie Barentsevo-Karskogo shel’fa (Geological Structure of Barents–Kara Shelf), Leningrad: Sevmorgeologiya, 1985, pp. 34–43.Google Scholar
  47. Tauxe, L., Kodama, K.P., and Kent, D.V., Testing corrections for paleomagnetic inclination error in sedimentary rocks: a comparative approach, Phys. Earth Planet. Inter., 2008, vol. 169, pp. 152–165.CrossRefGoogle Scholar
  48. Torsvik, T.H. and Smethurst, M.A., Plate tectonic modelling: virtual reality with GMAP, Comput. Geosci., 1999, vol. 25, pp. 395–402.CrossRefGoogle Scholar
  49. Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P.V., van Hinsbergen, D.J.J., Domeier, M., Gaina, C., Tohver, E., Meert, J.G., McCausland, P.J.A., and Cocks, L.R.M., Phanerozoic polar wander, paleogeography and dynamics, Earth Sci. Rev., 2012, vol. 114, pp. 325–368.CrossRefGoogle Scholar
  50. Vernikovsky, V.A., Dobretsov, N.L., Metelkin, D.V., Matushkin, N.Yu., and Koulakov, I.Yu., Concerning tectonics and the tectonic evolution of the Arctic, Rus. Geol. Geophys., 2013a, vol. 54, no. 8, pp. 838–858.CrossRefGoogle Scholar
  51. Vernikovsky, V.A., Metelkin, D.V., Tolmacheva, T.Yu., Malyshev, N.A., Petrov, O.V., Sobolev, N.N., and Matushkin, N.Yu., Concerning the issue of paleotectonic reconstructions in the Arctic and of the tectonic unity of the New Siberian Islands Terrane: new paleomagnetic and paleontological data, Dokl., Earth Sci., 2013b, vol. 451, no. 2, pp. 791–797.Google Scholar
  52. Watson, G.S. and Enkin, R.J., The fold test in paleomagnetism as a parameter estimation problem, Geophys. Rev. Lett., 1993, vol. 20, pp. 2135–2137.CrossRefGoogle Scholar
  53. Zhdanova, A.I., Metelkin, D.V., Vernikovsky, V.A., and Matushkin, N.Yu., The first paleomagnetic data on dolerites from Jeannette Island (New Siberian Islands, Arctic), Dokl., Earth Sci., 2016, vol. 468, no. 2, pp. 580–583.CrossRefGoogle Scholar
  54. Zonenshain, L.P. and Natapov, L.M., Tectonic history of Arctic, in Aktual’nye problemy tektoniki okeanov i kontinentov (Topical Problems in Tectonics of Oceans and Continents), Moscow: Nauka, 1987, pp. 31–57.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Abashev
    • 1
    • 2
  • D. V. Metelkin
    • 1
    • 2
  • N. E. Mikhal’tsov
    • 1
    • 2
  • V. A. Vernikovsky
    • 1
    • 2
  • N. Yu. Matushkin
    • 1
    • 2
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Trofimuk Institute of Petroleum Geology and Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations