Advertisement

Izvestiya, Physics of the Solid Earth

, Volume 53, Issue 4, pp 545–555 | Cite as

Assessment of seismic hazard of the Japanese islands based on fractal analysis of GPS time series

  • D. M. FilatovEmail author
  • A. A. Lyubushin
Article
  • 37 Downloads

Abstract

Based on the fractal analysis of the time series of the Earth’s surface vertical displacements in the region of the Japanese Archipelago, the maps of the estimates of seismic activity in the region over 2015 are constructed. The analysis of the maps revealed several segments of the territory which are prone to the emergence of significant earthquakes. The characteristic peculiarity is noted in the change of the behavior of the geophysical dynamic system—the Earth’s crust—before the occurrence of seismic events: the mechanism of transition to the critical state demonstrates the energy preservation of the low frequencies with the simultaneous energy decay of the middle and high frequencies, which differs from the behavior of the other dynamical systems.

Keywords

fractal analysis of GPS time series seismic activity earthquake precursors critical states Nankai trough Tohoku region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashkenazy, Y., Ivanov, P.C., Havlin, S., Peng, C.-K., Goldberger, A.L., and Stanley, H.E, Magnitude and sign correlations in heartbeat fluctuations, Phys. Rev. Lett., 2001, vol. 86, pp. 1900–1903.CrossRefGoogle Scholar
  2. Carbone, A., Castelli, G., and Stanley, H.E., Time-dependent Hurst exponent in financial time series, Physica A, 2004, vol. 344, pp. 267–271.CrossRefGoogle Scholar
  3. Feder, J., Fractals, New York: Plenum, 1988.CrossRefGoogle Scholar
  4. Haken, H., Information and Self-Organization: A Macroscopic Approach to Complex Systems. Springer, Berlin Heidelberg, 2000.Google Scholar
  5. Ivanov, P.C., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Stanley, H.E., and Struzik, Z.R, From 1/f noise to multifractal cascades in heartbeat dynamics, Chaos, 2001, vol. 11, pp. 641–652.CrossRefGoogle Scholar
  6. Kagan, Y.Y. and Jackson, D.D, Tohoku earthquake: a surprise?, Bull. Seismol. Soc. Am., 2013, vol. 103, pp. 1181–1194. doi 10.1785/0120120110CrossRefGoogle Scholar
  7. Kantelhardt, J.W., Fractal and multifractal time series, 2008. http://arxiv.org/abs/0804.0747.Google Scholar
  8. Lyubushin, A.A., Multifractal properties of low-frequency microseismic noise in Japan, 1997–2008, Proc. 7th General Assembly of Asian Seismological Commission and Seismological Society of Japan, 2008 Fall Meeting, Tsukuba, 24–27 November 2008, Hirahara K., Ed., Tsukuba,2008, p. 92.Google Scholar
  9. Lyubushin, A.A, Synchronization trends and rhythms of multifractal parameters of the field of low-frequency microseisms, Izv., Phys. Solid Earth, 2009, vol. 45, no. 5, pp. 381–394.CrossRefGoogle Scholar
  10. Lyubushin, A.A., Multifractal parameters of low-frequency microseisms, in Synchronization and Triggering: from Fracture to Earthquake Processes, V. de Rubeis et al., Eds., The Geo-Planet: Earth and Planetary Sciences Book Series, Berlin: Springer,2010a, Chapter 15, pp 253–272. doi 10.1007/978-3-642-12300-9_15CrossRefGoogle Scholar
  11. Lyubushin, A.A, Synchronization of multifractal parameters of regional and global low-frequency microseisms, Geophys. Res. Abstr. European Geosci. Union General Assembly, Vienna, 2010b, p. 696.Google Scholar
  12. Lyubushin, A.A, The statistics of the time segments of lowfrequency microseisms: trends and synchronization, Izv., Phys. Solid Earth, 2010c, vol. 46, no. 6, pp. 544–554.CrossRefGoogle Scholar
  13. Lyubushin, A.A, Cluster analysis of low-frequency microseismic noise, Izv., Phys. Solid Earth, 2011a, vol. 47, no. 6, pp. 488–495.CrossRefGoogle Scholar
  14. Lyubushin, A.A, Seismic catastrophe in Japan on March 11, 2011: long-term prediction on the basis of low-frequency microseisms, Izv., Atmos. Ocean. Phys., 2011b, vol. 46, no. 10, pp. 904–921. doi 10.1134/S0001433811080056Google Scholar
  15. Lyubushin, A, Prognostic properties of low-frequency seismic noise, Nat. Sci., 2012, vol. 4, no. 8A, pp. 659–666. doi 10.4236/ns.2012.428087Google Scholar
  16. Lyubushin, A, How soon would the next mega-earthquake occur in Japan?, Nat. Sci., 2013a, vol. 5, no. 8, pp. 1–7. doi 10.4236/ns.2013.58A1001Google Scholar
  17. Lyubushin, A.A, Mapping the properties of low-frequency microseisms for seismic hazard assessment, Izv., Phys. Solid Earth, 2013b, vol. 49, no. 1, pp. 9–18.CrossRefGoogle Scholar
  18. Lyubushin, A.A, Dynamic estimate of seismic danger based on multifractal properties of low-frequency seismic noise, Nat. Hazards, 2014, vol. 70, no. 1, pp. 471–483. doi 10.1007/s11069-013-0823-7CrossRefGoogle Scholar
  19. Lyubushin, A. and Yakovlev, P, Properties of GPS noise at Japan islands before and after Tohoku mega-earthquake, SpringerPlus, Earth and Environmental Sciences, 2014, vol. 3, pp. 364–371. http://www.springerplus.com/content/3/1/364. doi 10.1186/2193-1801-3-364Google Scholar
  20. Mogi, K, Two grave issues concerning the expected Tokai earthquake, Earth Planets Space, 2004, vol. 56, no. 8, pp. li–lxvi.CrossRefGoogle Scholar
  21. Moore, G.F., Bangs, N.L., Taira, A., Kuramoto, S., Pangborn, E., and Tobin, H.J., Three-dimensional splay fault geometry and implications for tsunami generation, Science, 2007, vol. 318, pp. 1128–1131.CrossRefGoogle Scholar
  22. Nevada Geodetic Laboratory (NGL), University of Nevada, the USA, 2015. http://geodesy.unr.edu/index.php. http://geodesy.unr.edu/index.php. Accessed March 2016.Google Scholar
  23. Oswiecimka, P., Kwapien, J., Drozdz, S., and Rak, R, Investigating multifractality of stock market fluctuations using wavelet and detrending fluctuation methods, Acta Phys. Pol. B, 2005, vol. 36, pp. 2447–2457.Google Scholar
  24. Peng, C.-K., Hausdorff, J.M., Mietus, J.E., Havlin, S., Stanley, H.E., and Goldberger, A.L., Fractals in physiological control: from heart beat to gait, in Lecture Notes in Physics: Leevy Flights and Related Topics in Physics, Shlesinger M., Zaslavsky G., Frisch U., Eds., Proc. Int. Workshop held at Nice, France, 27–30 June 1994, Berlin: Springer,1995a, pp. 313–330.CrossRefGoogle Scholar
  25. Peng, C.-K., Havlin, S., Stanley, H.E., and Goldberger, A.L, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos, 1995b, vol. 5, pp. 82–87.CrossRefGoogle Scholar
  26. Rikitake, T, Probability of a great earthquake to recur in the Tokai district, Japan: reevaluation based on newly developed paleoseismology, plate tectonics, tsunami study, microseismicity and geodetic measurements, Earth Planets Space, 1999, vol. 51, pp. 147–157.Google Scholar
  27. Simons, M., Minson, S.E., Sladen, A., Ortega, F., Jiang, J., Owen, S.E., Meng, L., Ampuero, J.-P., Wei, S., Chu, R., Helmberger, D.V., Kanamori, H., Hetland, E., Moore, A.W., and Webb, F.H, The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megathrust from seconds to centuries, Science, 2011, vol. 332, pp. 1421–1425. doi 10.1126/science.1206731CrossRefGoogle Scholar
  28. U.S. Geological Survey (USGS), search earthquake archives. 2015. http://earthquake.usgs.gov/earthquakes/search/. Accessed March 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia

Personalised recommendations