Izvestiya, Physics of the Solid Earth

, Volume 50, Issue 6, pp 795–813 | Cite as

Variations in radon activity in the crustal fault zones: Spatial characteristics

  • K. Zh. Seminsky
  • A. A. Bobrov
  • S. Demberel


The data of the profile gas emanation survey conducted on three spatial scales in separate regions of the Mongolia-Baikal seismic belt are generalized to establish the regularities of the spatially heterogeneous distribution of soil radon activity above the active faults in the Earth’s crust. It is shown that the shapes, sizes, and contrast of the near-fault radon anomalies are complicated by erosion and weathering; however, the critical role in their formation is played by the structural-geological controls, which determine the internal structure and recent activity of the fault zones. As a consequence, the cross-fault shape of the studied radon anomalies is vitally controlled by four structural situations, which correspond to the combinations of the structural type of the fault (localized/distributed) and the presence/absence of the fine filler material in the zone controlled by the fault. The cross-fault dimension of the emanation anomaly is commensurate or slightly larger than the width of the fault zone comprising all the fractures and joints associated with the formation of the main fault, which, due to the low permeability of the tectonites, is in most cases marked by the lowest concentration of soil radon. The contrast of the emanation anomalies, which we suggest to estimate in terms of a relative parameter K Q , gravitates to certain levels of this parameter. This provides the basis for distinguishing five groups of the fault zones with low (K Q ≤ 2), moderate (2 < K Q ≤ 3), increased (3 < K Q ≤ 5), high (5 < K Q ≤ 10), and ultrahigh (K Q > 10) radon activity. The previous studies show that for increasing the efficiency of the emanation survey in the fault zones, it is advisable to set up long profiles, reduce the measurement step in the vicinities of the main faults, specify the threshold of identifying the anomalies at the arithmetic mean level over the profile, and use the relative parameter K Q for comparing and estimating the faults in terms of the intensity of their radon activity.


Radon Fault Zone Solid Earth Radon Concentration Main Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adiya, M., Ankhtsetseg, D., Baasanbat, et al., One Century of Seismicity in Mongolia (1:2500000 map), Research Center of Astronomy and Geophysics, Mongolian Academy of Science and Departement Analyse Surveillance Environnement, CEA-France, Dugarmaa, T. and Schlupp, A., Coordinators, 2003.Google Scholar
  2. Adushkin, V.V., Spivak, A.A., and Kharlamov, V.A., Effects of Lunar-Solar tides in the variations of geophysical fields at the boundary between the Earth’s crust and the atmosphere, Izv., Phys. Solid Earth, 2012, vol. 48, no. 2, pp. 93–103-26.CrossRefGoogle Scholar
  3. Al-Bataina, B.A., Al-Taj, M.M., and Atallah, M.Y., Relation between radon concentrations and morphotectonics of the Dead Sea transform in Wadi Araba, Jordan, Radiat. Meas., 2005, vol. 40, pp. 539–543.CrossRefGoogle Scholar
  4. Angelone, M., Gasparini, C., Guerra, M., et al., Fluid geochemistry of the Sardinian rift-Campidano graben (Sardinia, Italy): fault segmentation, seismic quiescence of geochemically “active” faults, and new constraints for selection of CO2 storage sites, Appl. Geochem., 2005, vol. 20, pp. 317–340.CrossRefGoogle Scholar
  5. Atallah, M.Y., Al-Bataina, B.A., and Mustafa, H., Radon emanation along the Dead Sea transform (rift) in Jordan, Environ. Geol., 2001, vol. 40, pp. 1440–1446.CrossRefGoogle Scholar
  6. Ball, T.K., Cameron, D.G., Colman, T.B., et al., Behaviour of radon in the geological environment: a review, Quart. J. Eng. Geol. Hydrogeol., 1991, vol. 24, pp. 169–182.CrossRefGoogle Scholar
  7. Bobrov, A.A., Study of radon activity in the fault zones of the Olhon and Southern Angara regions: techniques and preliminary results, Izv. Sib. Otd. Sektsii Nauk Zemle RAEN. Geol. Poiski Razved. Rudn. Mestorozhd., 2008, vol. 32, no. 6, pp. 124–129.Google Scholar
  8. Buttafuoco, G., Tallarico, A., and Falcone, G., Mapping soil gas radon concentration: a comparative study of geostatistical methods, Environ. Monit. Assess, 2007, vol. 131, pp. 135–151.CrossRefGoogle Scholar
  9. Chernyago, B.P., Nepomnyashchikh, A.I., and Kalinovskii, G.I., Soil-to-dwelling radion isotope ratio in the Baikal region, Rus. Geol. Geophys., 2008, vol. 49, no. 12, pp. 971–977.CrossRefGoogle Scholar
  10. Chernyago, B.P., Nepomnyashchikh, A.I., and Medvedev, V.I., Current radiation environment in the Central Ecological Zone of the Baikal Natural Territory, Rus. Geol. Geophyz., 2012, vol. 53, no. 9, pp. 926–935.CrossRefGoogle Scholar
  11. Cicerone, R.D., Ebel, J.E., and Britton, J., A systematic compilation of earthquake precursors, Tectonophysics, 2009, vol. 476, pp. 371–396.CrossRefGoogle Scholar
  12. Ciotoli, G., Etiope, G., Guerra, M., et al., The detection of concealed faults in the Ofanto Basin using the correlation between soil-gas fracture surveys, Tectonophysics, 1999, vol. 301, pp. 321–332.CrossRefGoogle Scholar
  13. Delvaux, D., Moyes, R., Stapel, G., et al., Paleostress reconstruction and geodynamics of the Baikal region, Central Asia. Part II: Cenozoic rifting, Tectonophysics, 1997, vol. 282, pp. 1–38.CrossRefGoogle Scholar
  14. Dombrovskaya, Zh.V., Paleogenovaya kora vyvetrivaniya Tsentral’nogo Pribaikal’ya (The Paleogene Weathering Crust of Central Baikal region), Moscow: Nauka, 1973.Google Scholar
  15. Duddridge, G.A., Grainger, P., and Durrance, E.M., Fault detection using soil gas geochemistry, Quart. J. Eng. Geol. Hydrogeol., 1991, vol. 24, pp. 427–435.CrossRefGoogle Scholar
  16. Font, L., Baixeras, C., Moreno, V., et al., Soil radon levels across the Amer fault, Radiat. Meas., 2008, vol. 43, pp. S319–S323.CrossRefGoogle Scholar
  17. Fu, C.-C., Yang, T.F., Du, J., et al., Variations of helium and radon concentrations in soil gases from an active fault zone in southern Taiwan, Radiat. Meas., 2008, vol. 43, pp. S348–S352.CrossRefGoogle Scholar
  18. Gol’din, S.V., Suvorov, V.D., Makarov, P.V., and Stefanov, Yu.P., An instability gravity model for the structure and stress-strain state of lithosphere in the Baikal Rift, Rus. Geol. Geophys., 2006, vol. 46, no. 10, pp. 1079–1090.Google Scholar
  19. Inceöz, M., Baykara, O., Aksoy, E., et al., Measurements of soil gas radon in active fault systems: a case study along the North and East Anatolian fault systems in Turkey, Radiat. Meas., 2006, vol. 41, pp. 349–353.CrossRefGoogle Scholar
  20. Ioannides, K., Papachristodoulou, C., Stamoulis, K., et al., Soil gas radon: a tool for exploring active fault zones, Appl. Radiat. Isot., 2003, vol. 59, pp. 205–213.CrossRefGoogle Scholar
  21. Karta noveishei tektoniki yuga Vostochnoi Sibiri. Masshtab 1: 1 500 000 (The 1: 1500000 Neotectonic Map of the Southern Regions of East Siberia), Zolotarev, A.G. and Khrenov, P.M., Eds., Moscow: Mingeo SSSR, 1979.Google Scholar
  22. Karta razlomov yuga Vostochnoi Sibiri. Masshtab 1: 1500000 (The 1: 1500000 Map of the Faults in the Southern Regions of East Siberia) Khrenov, P.M., Ed., Moscow: Mingeo SSSR, 1982.Google Scholar
  23. Kemski, J., Klingel, R., and Siehl, A., Classification and mapping of radon-affected areas in Germany, Environ. Int., 1996, vol. 22,Suppl. 1, pp. 789–798.CrossRefGoogle Scholar
  24. Khromovskikh, V.S., Seismogeologiya Yuzhnogo Pribaikal’ya (Seismogeology of the Southern Baikal Region), Moscow: Nauka, 1965.Google Scholar
  25. King, C.-Y., Zhang, W., and King, B.-S., Radon anomalies on three kinds of faults in California, Pure Appl. Geophys., 1993, vol. 141, no. 1, pp. 111–124.CrossRefGoogle Scholar
  26. Koike, K., Yoshinaga, T., and Asaue, H., Radon concentrations in soil gas, considering radioactive equilibrium conditions with application to estimating fault-zone geometry, Environ. Geol., 2009, vol. 56, pp. 1533–1549.CrossRefGoogle Scholar
  27. Kompleks izmeritel’nyi dlya monitoringa radona “KAMERA-01”. Rukovodstvo po ekspluatatsii (KAMERA-01 Radon Monitoring Complex: User Manual), Moscow: NITON, 2003.Google Scholar
  28. Koval, P.V., Udodov, Yu.N., San’kov, V.A., Yasenovskii, A.A., and Andrulaitis, L.D., Geochemical activity of faults in the Baikal Rift Zone (mercury, radon, and rhoron), Dokl. Earth. Sci., 2006, vol. 409A, no. 6, pp. 912–915.CrossRefGoogle Scholar
  29. Levi, K.G., Relative plate motion in the Baikal Rift Zone, Geol. Geofiz., 1980, no. 5, pp. 9–15.Google Scholar
  30. Lombardi, S. and Voltattorni, N., Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults, Appl. Geochem., 2010, vol. 25, pp. 1206–1220.CrossRefGoogle Scholar
  31. Mats, V.D., The structure and development of the Baikal rift depression, Earth Sci. Rev., 1993, vol. 34, pp. 81–118.CrossRefGoogle Scholar
  32. Metodika ekspressnogo izmereniya ob“emnoi aktivnosti 222Rn v pochvennom vozdukhe s pomoshch’yu radiometra radona tipa RRA. Rekomendatsiya (Protocol of Express Measurements of Radon Activity in Soil by RPA Radon Radiometer. Guidelines), Moscow: NPP Doza, 2004.Google Scholar
  33. Moussa, M.M. and El Arabi, A.-G.M., Soil radon survey for tracing active fault: a case study along Qena-Safaga road, Eastern Desert, Egypt, Radiat. Meas., 2003, vol. 37, no. 3, pp. 211–216.CrossRefGoogle Scholar
  34. Palacky, G.J., Resistivity characteristics of geologic targets, in: Electromagnetic Methods in Applied Geophysics, Nabighian, M.N., Ed., Soc. Explor. Geophys., 1989, pp. 53–130.Google Scholar
  35. Park, R.G., Foundations of Structural Geology, London: Chapman and Hall, 1997.Google Scholar
  36. Popov, A.M., The results of deep magnetotelluric sounding in the Baikal region in the context of the data from other geophysical methods, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1989, no. 8, pp. 31–37.Google Scholar
  37. Richon, P., Klinger, Y., Tapponnier, P., et al., Measuring radon flux across active faults: relevance of excavating and possibility of satellite discharges, Radiat. Meas., 2010, vol. 45, pp. 211–218.CrossRefGoogle Scholar
  38. Rikitake, T., Biosystem behaviour as an earthquake precursors, Tectonophysics, 1978, vol. 51, pp. 1–20.CrossRefGoogle Scholar
  39. San’kov, V.A., Miroshnichenko, A.I., Levi, K.G., et al., Cenozoic stress field evolution in the Baikal rift zone, Bull. Cent. Rech. Elf Explor. Prod., 1997, vol. 21, no. 2, pp. 435–455.Google Scholar
  40. San’kov, V.A., Lukhnev, A.V., Miroshnichenko, A.I., Ashurkov, S.V., Byzov, L.M., Dembelov, M.G., Calais, E., and Déverchère, J., Extension in the Baikal Rift: present-day kinematics of passive rifting, Dokl. Earth Sci., 2009, vol. 425, no. 2, pp. 205–209.CrossRefGoogle Scholar
  41. Seminsky, K.Zh., Vnutrennyaya struktura kontinental’nykh razlomnykh zon. Tektonofizicheskii aspekt (Internal Structure of Continental Fault Zones: Tectonophysical Aspect), Novosibirsk: SO RAN, GEOS, 2003.Google Scholar
  42. Seminsky, K.Zh. and Bobrov, A.A., Radon activity of faults (western Baikal and southern Angara areas), Rus. Geol. Geophys., 2009a, vol. 50, no. 8, pp. 682–692.CrossRefGoogle Scholar
  43. Seminsky, K.Zh. and Bobrov, A.A., Comparative assessment of radon activity for different fault types and scale ranks in the Baikal Rift and south of the Siberian Platform, Dokl. Earth Sci., 2009b, vol. 427A, no. 6, pp. 915–919.CrossRefGoogle Scholar
  44. Seminsky, K.Zh. and Radziminovich, Ya.B., Cross-sectional sizes and lateral zonality of the Baikal Seismic Belt, Dokl. Earth Sci., 2011, vol. 438,part 1, pp. 645–648.CrossRefGoogle Scholar
  45. Seminsky, K.Zh. and Bobrov, A.A., The first results of studies of temporary variations in soil-radon activity of faults in Western Pribaikalie, Geodinam. Tektonofiz., 2013, vol. 4, no. 1, pp. 1–12.Google Scholar
  46. Seminsky, K.Zh. and Demberel, S., The first estimations of soil-radon activity near faults in Central Mongolia, Radiat. Meas., 2013, vol. 49, pp. 19–34.CrossRefGoogle Scholar
  47. Seminsky, K.Zh., Kozhevnikov, N.O., Cheremnykh, A.V., Pospeeva, E.V., Bobrov, A.A., Olenchenko, V.V., Tugarina, M.A., Potapov, V.V., Zaripov, R.M., and Cheremnykh, A.S., Interblock zones in the crust of the southern regions of East Siberia: tectonophysical interpretation of geological and geophysical data, Geodinam. Tektonofiz. 2013, vol. 4, no. 3, pp. 203–278.Google Scholar
  48. Spivak, A.A., The specific features of geophysical fields in the fault zones, Izv., Phys. Solid Earth, 2010, vol. 46, no. 4, pp. 327–338.CrossRefGoogle Scholar
  49. Sun, Yunshen, Krylov, S.V., Baojiun, Yan, et al., Deep seismic sounding of the lithosphere on Baikal-Northeast China international transect, Geol. Geofiz., 1996, vol. 37, no. 2, pp. 3–15.Google Scholar
  50. Suvorov, V.D. and Tubanov, Ts.A., Distribution of local earthquakes in the crust beneath central Lake Baikal, Rus. Geol. Geophys., 2008, vol. 49, no. 8, pp. 611–620.CrossRefGoogle Scholar
  51. Tansi, C., Tallarico, A., Iovine, G., et al., Interpretation of radon anomalies in seismotectonic and tectonic-gravitational settings: the south-eastern Crati graben (Northern Calabria, Italy), Tectonophysics, 2005, vol. 396, pp. 181–193.CrossRefGoogle Scholar
  52. Toutain, J.-P. and Baubron, J.-C., Gas geochemistry and seismotectonics: a review, Tectonophysics, 1999, vol. 304, pp. 1–27.CrossRefGoogle Scholar
  53. Utkin, V.I., Mamyrov, E., Kan, M.V., Krivasheev, S.V., Yurkov, A.K., Kosyakin, I.I., and Shishkanov, A.N., Radon monitoring in the Northern Tien Shan with application to the process of tectonic earthquake nucleation, Izv., Phys. Solid Earth, 2006, vol. 42, no. 9, pp. 775–784.CrossRefGoogle Scholar
  54. Voitov, G.I., Monitoring the radon activity in subsoil air seismically active Central Asia, Izv. Akad. Nauk, Fiz. Zemli, 1998, no. 1, pp. 27–38.Google Scholar
  55. Walia, V., Mahajan, S., Kumar, A., et al., Fault delineation study using soil-gas method in the Dharamsala area, NW Himalayas, India, Radiat. Meas., 2008, vol. 43, pp. S337–S342.CrossRefGoogle Scholar
  56. Walia, V., Lin, S.J., Fu, C.C., et al., Soil-gas monitoring: a tool for fault delineation studies along Hsinhua Fault (Tainan), Southern Taiwan, Appl. Geochem., 2010, vol. 25, pp. 602–607.CrossRefGoogle Scholar
  57. Wiersberg, N. and Erzinger, J., Origin and spatial distribution of gas at seismogenic depths of the San Andreas fault from drill-mud gas analysis, Appl. Geochem., 2008, vol. 23, pp. 1675–1690.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of the Earth’s CrustSiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations