Izvestiya, Physics of the Solid Earth

, Volume 50, Issue 1, pp 38–56 | Cite as

Present-day geodynamics of the Mediterranean-Lesser Caucasus part of the Alpine-Indonesian Mobile Belt

  • V. I. Shevchenko
  • A. A. Lukk
  • M. T. Prilepin
  • R. E. Reilinger


At present, the concept of plate tectonics is predominant in the Earth sciences. However, there are also other, less popular ideas concerning the geodynamics of the Earth’s crust/lithosphere. The highly accurate modern geodetic measurements such as GPS, SLR, and VLBI provide a new framework for assessing different standpoints. The results of global-scale geodetic measurements are in close agreement with the global plate tectonic reconstructions. However, the same measurements of regional networks in the Mediterranean part of the Alpine-Indonesian Mobile Belt yield results that disagree with the plate’s tectonic reconstructions for this region. These measurements show that the belt’s width in many areas of Eurasian and African lithospheric plates’ convergence is not decreasing at present, as follows from the plate reconstructions, but increasing. At the same time, the segments of the belt under consideration are in a state of stress characterized by near-horizontal compression oriented across the strike of the belt. This contradiction can only be explained if it is assumed that the formation of the tectonic structure of the mobile belt is related to the active growth of the volume of the bedded rocks of the belt, i.e., of the plate’s convergence zone. This growth is apparently due to the additional mineral material gained by the ascending mantle fluid flows. This implies that local, autonomous dynamic processes are required in addition to the lithospheric plate’s interactions to account for the tectonic deformations observed in the mobile belt.


tectonic structure present-day geodynamics geodetic measurements fluid flow lithogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angelier, J., Lyberis, N., Le Pichon, X., Barrier, E., and Huchon, P., The tectonic development of the Hellenic Arc and the Sea of Crete: A synthesis, Tectonophysics, 1982, vol. 86, nos. 1/3, pp. 159–196.Google Scholar
  2. Anzidei, M., Baldi, P., Casula, G., Galvani, A., Mantovani, E., Pesci, A., Riguzzi, F., and Serpelloni, E., Insights into present-day crustal motion in the Central Mediterranean Area from GPS surveys, Geophys. J. Int., 2001, vol. 146, no. 1, pp. 98–110.Google Scholar
  3. Aubouin, J., Mediterranee orientale et Mediterranee occidentale: esquisse d’une comparaison du Carde Alpin, Bull. Soc. Geol. Fr. Ser., 1977, vol. 19, no. 3, pp. 421–435.Google Scholar
  4. Bazhenov, M.L. and Burtman, V.S., Strukturnye dugi Al’piiskogo poyasa: Karpaty-Kavkaz-Pamir (Structural Arcs of Alpine Belt: the Carpathians-Caucasus-Pamirs), Moscow: Nauka, 1990.Google Scholar
  5. Belostotskii, I.I., Stroenie i formirovanie tektonicheskikh pokrovov (Structure and Formation of Tectonic Nappes), Moscow: Nedra, 1978.Google Scholar
  6. Belousov, V.V., Osnovnye voprosy geotektoniki (Basic Issues of Geotectonics), Moscow: Gosgeoltekhizdat, 1962.Google Scholar
  7. Beus, A.A., Geokhimiya litosfery (Geochemistry of the Lithosphere), Moscow: Nedra, 1981.Google Scholar
  8. Beutler, G., Rothacher, M., Schaer, S., Springer, T.A., Kouba, J., and Neilan, R.E., An interdisciplinary service in support of Earth sciences, Adv. Space Res., 1999, vol. 23, no. 4, pp. 631–653.Google Scholar
  9. Biju-Duval, B. and Montadert, L., Introduction to the structural history of the Mediterranean Basins, in Structural History of the Mediterranean Basins, Biju-Duval, B. and Montadert, L., Eds., Paris: Technip, Paris, 1977, pp. 1–12.Google Scholar
  10. Bijwaard, N. and Spakman, W., Closing the gap between regional and global travel time tomography, J. Geophys. Res., 1998, vol. 103, no. B12, pp. 30055–30078.Google Scholar
  11. Blanco, M.J. and Spakman, W., The P-wave velocity structure of the mantle below the Iberian Peninsula: Evidence for subducted lithosphere below Southern Spain, Tectonophysics, 1993, vol. 221, no. 1, pp. 13–34.Google Scholar
  12. Bogdanov, N.A., Khain, V.E., Chekhovich, V.D., Koronovskii, N.V., and Lomize, M.G., Ob″yasnitel’naya zapiska k Tektonicheskoi karte Sredizemnogo morya (Explanatory Notes to the Tectonic Map of the Mediterranean Sea), Moscow, 1994a.Google Scholar
  13. Bogdanov, N.A., Koronovskii, N.V., Lomize, M.G., Chekhovich, V.D., and Yutsis, V.V., Tektonicheskaya karta Sredizemnogo morya. 1: 5000000 (The 1: 5000000 Tectonic Map of the Mediterranean Sea), Moscow: Federal’naya sluzhba geodezii i kartografii Rossii, 1994b.Google Scholar
  14. Buforn, E., Sanz, De., Galdeano, C., and Udias, A., Seismotectonics of the Ibero-Maghrebian Region, Tectonophysics, 1995, vol. 248, no. 3, pp. 247–261.Google Scholar
  15. Burchfiel, B.C., Eastern European Alpine system and the Carpathian Orocline as an example of collision tectonics, Tectonophysics, 1980, vol. 63, nos. 1–4, pp. 31–61.Google Scholar
  16. Burtman, V.S., Kinematics of the Carpathian structural loop, Geotektonika, 1984, no. 3, pp. 17–31.Google Scholar
  17. Calais, E., Continuous GPS measurements across the Western Alps, 1996–1998, Geophys. J. Int., 1999, vol. 138, no. 1, pp. 221–230.Google Scholar
  18. Calais, E., Nocquet, J.-M., Jouanne, F., and Tardy, M., Current strain regime in the Western Alps from continuous Global Positioning System measurements, 1996–2001, Geology, 2002, vol. 30, no. 7, pp. 651–654.Google Scholar
  19. Caporali, A. and Martin, S., First results from GPS measurements on present-day Alpine kinematics, J. Geodyn., 2000, vol. 30, pp. 275–288.Google Scholar
  20. Caporali, A., Martin, S., and Massironi, M., Average strain rate in the Italian crust inferred from a permanent GPS network: II. Strain rate versus seismicity and structural geology, Geophys. J. Int., 2003, vol. 155, no. 1, pp. 254–268.Google Scholar
  21. Čermak, V. and Hurtig, E., Heat flow map of Europe, 1:5000000, in Terrestrial Heat Flow in Europe, Čermak, V. and Rybach, L., Eds., Berlin: Springer, 1979Google Scholar
  22. Chavet, X., Valette, J., and Feissel-Vernier, M., Analysis of geocenter time series derived from SLR, GPS, DORIS, Am. Geophys. Union Fall Meeting, December 8–12, 2003, San Francisco, 2003, pp. 1–4.Google Scholar
  23. Chekunov, A.V., Tectogenesis at large depths, Geotektonika, 1991, no. 3, pp. 3–15.Google Scholar
  24. Cretaux, J.-F., Soudarin, L., Cazenave, A., and Bouile, F., Present-day tectonic plate motions and crustal deformations from the DORIS space system, J. Geophys. Res., 1998, vol. 103, no. B12, pp. 30176–30181.Google Scholar
  25. De Jong, K.A., Introduction. Orogeny in the Mediterranean Area, in Gravity and Tectonics, New York: Wiley, 1973, pp. 141–153.Google Scholar
  26. Devoti, R., Ferraro, C., Lanotte, R., Luceri, V., Nardi, A., Pacione, R., Rutigliano, P., and Sciaretta, C., Deformations and stress field in the Mediterranean Area from geodetic and geophysical approaches, in The 10th General Assembly of the WEGENER Project, Extended Abstracts Book (Boletin Real Instituto y Observatorio de la Armada, Spain, 3/2000), 2000, pp. 97–101.Google Scholar
  27. Devoti, R., Ferraro, C., Lanotte, R., Luceri, V., Sciarretta, C., and Bianco, G., Combined velocity solution in the Central Mediterranean Area obtained from Space Geodetic Networks, in Proc. 11th General Assembly of the WEGENER Project, WEGENER 2000, Athens, 2002, pp. 17–21.Google Scholar
  28. Dewey, J.F. and Sengor, A.M.C., Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone, Geology, 1979, vol. 90, no. 1, pp. 84–92.Google Scholar
  29. Dewey, J.F., Hempton, M.R., Kidd, W.S.F., Saroglu, F., and Sengor, A.M.C., Shortening of continental lithosphere: the neotectonics of Eastern Anatolia-a young collision zone, Geol. Soc. London Spec. Publ., 1986, vol. 19, pp. 3–36.Google Scholar
  30. Dotsev, N.T. and Yunga, S.L., Focal mechanisms of the earthquakes of Bulgaria, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1988, no. 4, pp. 3–11.Google Scholar
  31. Faccenna, C., Becker, T.W., Lucente, F.P., Jolivet, Z., and Rossetti, F., History of subduction and back-arc extension in the Central Mediterranean, Geophys. J. Int., 2001, vol. 145, no. 3, pp. 809–820.Google Scholar
  32. Fadil, A., Vernant, Ph., McClusky, S., Reilinger, R., Francisco, G., Ben Sari, D., Mourabit, T., Feige, K., and Barazangi, M., Active tectonics of the western Mediterranean: Geodetic evidence for rollback of delaminated subcontinental lithospheric slab beneath the Rif Mountains, Morocco, Geology, 2006, vol. 34, no. 7, pp. 529–532.Google Scholar
  33. Ferland, R., JGS Reference Frame coordination and working group activities, in Int. Geod. Service Ann. Report, 2000, pp. 24–27.Google Scholar
  34. Frolov, V.T., Litologiya (Lithology), Moscow: MSU, 1992, 1993.Google Scholar
  35. Garrels, R.M. and Mackenzie, F.T., Evolution of Sedimentary Rocks, New York: Norton, 1971.Google Scholar
  36. Goncharov, M.A., Inversiya plotnosti v zemnoi kore i skladkoobrazovanie (Inversion of Density in the Earth’s Crust and Folding), Moscow: Nedra, 1979.Google Scholar
  37. GPS Time Service, Jet Propulsion Laboratory, California Institute of Technology.
  38. Grachev, A.F., Pannonskii rift. Noveishaya tektonika, geodinamika i seismichnost’ Severnoi Evrazii (Pannonian Rift: Neotectonics, Geodynamics, and Seismicity of Northern Eurasia), Moscow: Probel, 2000.Google Scholar
  39. Greensmith, J., Petrology of the Sedimentary Rocks, London: Allen and Unwin, 1981.Google Scholar
  40. Grenerczy, G., A decade of space geodetic monitoring of crustal deformation from the Mediterranean to Fennoscandia, The 10th General Assembly of the WEGENER Project, Extended Abstracts Book (Boletin Real Instituto y Observatorio de la Armada, 3/2000), Spain, 2000, pp. 13–17.Google Scholar
  41. Grenerczy, G., Sella, G., Stein, S., and Kenyers, A., Tectonic implications of the GPS velocity field in the northern Adriatic region, Geophys. Rev. Lett., 2005, vol. 32, no. 16, L16311, pp. 1–4.Google Scholar
  42. Gutscher, M.-A., Malod, J., Rehault, J.P., Contrucci, I., Klingelhoefer, F., Mendes-Victor, L., and Spakman, W., Evidence for active subduction beneath Gibraltar, Geology, 2002, vol. 30, pp. 1071–1074.Google Scholar
  43. Hollenstein, Ch., Kahle, H.-G., Geiger, A., Jenny, S., Goes, S., and Giardini, D., New GPS constraints on the Africa-Eurasia plate boundary zone in Southern Italy, Geophys. Rev. Lett., 2003, vol. 30, no. 18, SDE5, pp. 1–4.Google Scholar
  44. Horvath, F., Bodri, L., and Ottlik, P., Geothermics of Hungary and the tectonophysics of the Pannonian Basin “Red Spot,” in Terrestrial heat flow in Europe, Cermak, V. and Rybach, L., Eds., Berlin: Springer, 1979, pp. 206–217.Google Scholar
  45. Horvath, F. and Cloetingh, S., Stress induced late-stage subsidence anomalies in the Pannonian Basin, Tectonophysics, 1996, vol. 266, no. 1/4, pp. 287–300.Google Scholar
  46. Jolivet, L. and Faccenna, C., Mediterranean extension and the Africa-Eurasia collision, Tectonics, 2000, vol. 19, no. 6, pp. 1095–1106.Google Scholar
  47. Kahle, H.-G. and Mueller, S., Structure and dynamics of the Eurasian-African/Arabian plate boundary system: objectives, tasks and resources of the Wegener Group, J. Geodyn., 1998, vol. 25, no. 3/4, pp. 303–325.Google Scholar
  48. Kahle, H.-G., Cocard, M., Peter, Y., Geiger, A., Reilinger, R., McClusky, S., King, R., Barka, A., and Veis, G., The GPS strain rate field in the Aegean Sea and Western Anatolia, Geophys. Rev. Lett., 1999, vol. 26, no. 16, pp. 2513–2516.Google Scholar
  49. Kahle, H.-G., Cocard, M., Peter, Y., Geiger, A., Reilinger, R., Barka, A., and Veis, G., GPS-derived strain rate field within the boundary zones of the Eurasian, African, and Arabian plates, J. Geophys. Res., 2000, vol. 105, no. B10, pp. 23353–23370.Google Scholar
  50. Karason, H., Constrains on mantle convection from seismic tomography, in The History and Dynamics of Global Plate Motions, Richards, M.A., Gordon, R.G., and van der Hilst, R.D., Eds., AGU Geophysical Monograph Series, vol. 121, Washington: AGU, 2000, pp. 277–288.Google Scholar
  51. Kenyon, N.H. and Belderson, R.H., Young compressional structures of the Calabrian, Hellenic and Cyprus Outer Ridges, in Structural History of the Mediterranean Basins, Paris: Technip, 1977, pp. 233–240.Google Scholar
  52. Kenyon, N.H., Belderson, R.H., and Stride, A.H., Detailed tectonic trends on the central part of the Hellenic Outer Ridge and in the Hellenic Trench System, Geol. Soc. London Spec. Publ., 1982, no. 10, pp. 335–343.Google Scholar
  53. Khain, V.E., Obshchaya geotektonika (General Geotectonics), Moscow: Nedra, 1973.Google Scholar
  54. Khain, V.E., Regional’naya geotektonika. Al’piiskii Sredizemnomorskii poyas (Regional Geotectonics. Alpine Mediterranean Belt), Moscow: Nedra, 1984.Google Scholar
  55. Khain, V.E., Tektonika kontinentov i okeanov (god 2000) (Tectonics of Continents and Oceans: Year 2000), Moscow: Nauchnyi Mir, 2001.Google Scholar
  56. Kober, L., Der Bau der Erde, Wien: Deuticke, 1921.Google Scholar
  57. Kober, L., Tektonische Geologie, Verlag von Gebruder Borutcalger, 1942.Google Scholar
  58. Kopp, M.L., Struktury lateral’nogo vyzhimaniya v Al’piiskoGimalaiskom kollizionnom poyase. Tr. GIN RAN. Vyp. 506 (Structures of Lateral Extrusion in the Alpine-Himalaya Collision Belt. Trans. Geological Institute, Russian Academy of Sciences, vol. 506), Moscow: Nauchnyi Mir, 1997.Google Scholar
  59. Koronovskii, N.V., Lomize, M.G., Galkin, V.A., and Zaitsev, V.A., Correlation of ophiolitic sutures and active faults west of the Arabian wedge, Vestn. Mosk. Univ., Ser. 4: Geol., 2000, no. 1, pp. 13–25.Google Scholar
  60. Kotzev, V., Nakov, R., Burchfiel, B.C., King, R., and Reilinger, R., GPS study of active tectonics in Bulgaria: results from 1996 to 1998, J. Geodyn., 2001, vol. 31, no. 2, pp. 189–200.Google Scholar
  61. Koulali, A., Ouazar, D., Tahayt, A., King, R.W., Vernant, P., Reilinger, R.E., McClusky, S., Mourabit, T., Davila, J.M., and Amraoui, N., New GPS constrain on active deformation along the Africa-Iberia plate boundary, Earth Planet. Sci. Lett., 2011, vol. 308, nos. 1–2, pp. 211–217.Google Scholar
  62. Larson, K.M., Freymueller, J.T., and Philipsen, S., Global plate velocities from Global Positioning System, J. Geophys. Res., 1997, vol. 102, no. B5, pp. 9961–9981.Google Scholar
  63. Latynina, L.A., Verbitskii, T.Z., and Ignatishin, V.V., On the deformation processes in the northeastern part of the Carpathian-Balkan region, Fiz. Zemli, 1995, no. 4, pp. 3–16.Google Scholar
  64. Lavecchia, G., Ferrazini, F., de Nardis, R., Visini, F., and Barbano, M.S., Active thrusting as a possible seismogentic surce in Sicily (Southern Italy): Some insigth from integrated structural-kinematic and seismological data, Tectonophysics, 2007, vol. 445, Iss. 3–4, pp. 145–167.Google Scholar
  65. Le Pichon, X. and Angelier, J., The Hellenic Arc and Trench System: A key to the neotectonic evolution of the Eastern Mediterranean Area, Tectonophysics, 1979, vol. 60, nos. 1/2, pp. 1–42.Google Scholar
  66. Le Pichon, X. and Angelier, J., The Aegean Sea, Phil. Trans. R. Soc. London Ser. A., 1981, vol. 300 (1454), pp. 357–372.Google Scholar
  67. Le Pichon, X., Lyberis, N., Angelier, J., and Renard, V., Strain distribution over the East Mediterranean Ridge: A synthesis incorporating new sea-beam data, Tectonophysics, 1982, vol. 86, nos. 1/3, pp. 243–274.Google Scholar
  68. Lomize, M.G., Bends of ophiolitic sutures and collisional flow of rock masses west of the Arabian Syntax, in Proc. 35th All-Russia Tectonic Conference on General Problems of Tectonics and Tectonics of Russia, Moscow: GEOS, 2000, pp. 308–311.Google Scholar
  69. Lonergan, L. and White, N., Origin of the Betic-Rif Mountain Belt, Tectonics, 1997, vol. 16, no. 3, pp. 504–522.Google Scholar
  70. Malusa, M.G., Polino, R., and Zattin, M., Strain partitioning in axial NW Alps since the Oligocene, Tectonics, 2009, vol. 28, no. 3, TC3005, pp. 1–26.Google Scholar
  71. McClusky, S., Balassanian, S., Barka, A., Demir, C., Erginta, V.S., Georgiev, I., Gurkan, O., and Hamburger, M., Global Positioning System constraints on plate kinematics and dynamics in the Eastern Mediterranean and Caucasus, J. Geophys. Res., 2000, vol. 105, no. B3, pp. 5695–5719.Google Scholar
  72. McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D., and Tealeb, A., GPS constraints on Africa (Nubia) and Arabia plate motions, Geophys. J. Int., 2003, vol. 155, no. 1, pp. 126–138.Google Scholar
  73. McKenzie, D., Active tectonics of the Mediterranean Region, Geophys. J. R. Astron. Soc., 1972, vol. 30, no. 2, pp. 109–185.Google Scholar
  74. McKenzie, D., Active tectonics of the Alpine-Himalayan Belt: The Aegean Sea and surrounding regions, Geophys. J. R. Astron. Soc., 1978, vol. 55, no. 1, pp. 217–254.Google Scholar
  75. Meijer, P.Th. and Wortel, V.J.R., Present-day dynamics of the Aegean Region: A model analysis of the horizontal pattern of stress and deformation, Tectonics, 1997, vol. 16, no. 6, pp. 879–895.Google Scholar
  76. Mezhdunarodnaya tektonicheskaya karta Evropy. 1:2500000 (The 1: 2500000 International Tectonic Map of Europe), Moscow: AN SSSR, Ministerstvo geologii SSSR, 1981.Google Scholar
  77. Milanovskii, E.E., Kinematics of tectonic movements, thermal regime, and volcanism of the Mediterranean geosynclinal belt and its frames in the orogenic stage of the Alpine cycle, Vulkanol. Seismol., 1981, no. 4, pp. 11–35.Google Scholar
  78. Moix, P., Boccaletti, L., Kozur, H.W., Hochard, C., Rosselet, F., and Stampfli, G.M., A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region, Tectonophysics, 2008, vol. 451, nos. 1–4, pp. 7–39.Google Scholar
  79. Morel, J.L. and Meghraoui, M., Goringe-Alboran-Tell tectonic zone: A transpression system along the Africa-Eurasia plate boundary, Geology, 1996, vol. 24, no. 8, pp. 755–758.Google Scholar
  80. Muller, B., Zoback, M.L., Fuchs, K., Mastin, L., Gregersen, S., Pavoni, N., Stephansson, O., and Ljunggren, C., Regional patterns of tectonic stress in Europe, J. Geophys. Res., 1992, vol. 97, no. B8, pp. 11783–11803.Google Scholar
  81. Negusini, M., Romagnoli, C., and Zerbini, S., Horizontal movements in northeastern Italy from continuous and episodic GPS observations, The I0th General Assembly of the WEGENER Project, Extended Abstracts Book (Boletin Real Instituto y Observatorio de la Armada, 3/2000), Spain, 2000, pp. 24–30.Google Scholar
  82. Nikolaev, P.N. and Shanov, S.B., Experience in estimating the stress fields and formation mechanism of the recent structures of Central Pre-Balkan (Bulgaria), Vestn. Mosk. Univ., er. 4: Geol., 1983, no. 1, pp. 16–23.Google Scholar
  83. Nocquet, J.-M., Calais, E., Altamimi, Z., Sillard, P., and Boucher, C., Intraplate deformation in Western Europe deduced from an analysis of the ITRF97 velocity field, J. Geophys. Res., 2001, vol. 106, no. B6, pp. 11239–11257.Google Scholar
  84. Nocquet, J.-M. and Calais, E., Crustal velocity field of Western Europe from permanent GPS array solution, 1996–2001, Geophys. J. Int., 2003, vol. 154, no. 1, pp. 72–88.Google Scholar
  85. Nocquet, J.-M. and Calais, E., Geodetic measurements of crustal deformation in the Western Mediterranean and Europe, Pure Appl. Geophys., 2004, vol. 161, pp. 661–681.Google Scholar
  86. Oxburg, E.R., The Eastern Alps, in Mesozoic-Cenozoic Orogenic Belts, London: The Geol. Soc. London, Special Publ., 1974, vol. 4, pp. 109–126.Google Scholar
  87. Papazachos, B.C. and Papadopoulos, G.A., Deep tectonic and associated ore deposits in the Aegean Area, Proc. 6th Colloquium on the Geology of the Aegean Region, Athens, 1979, pp. 1071–1081.Google Scholar
  88. Papazachos, B.C., Kiratzi, A.A., Hatzidimitriou, P.M., and Rocca, A.C., Seismic faults in the Aegean Area, Tectonophysics, 1984, vol. 106, nos. 1/2, pp. 71–85.Google Scholar
  89. Pettijohn, F., Potter, P., and Siever, R., Sand and Sandstone, New York: Springer, 1972.Google Scholar
  90. Pettijohn, F. J., Sedimentary Rocks, 3rd ed., New York: Harper and Row, 1976.Google Scholar
  91. Prilepin, M.T., Balasanyan, S., Baranova, S.M., Guseva, T.V., Mishin, A.V., Nadariya, M., Rogozhin, E.A., Rozenberg, N.K., Skovorodkin, Yu.P., Hamburger, M., King, R., and Reilinger, R., The kinematic study of the Caucasus region using GPS techniques, Izv., Phys. Solid Earth, 1997, vol. 33, no. 6, pp. 486–493.Google Scholar
  92. Prilepin, M.T., Geodetic and paleomagnetic models of global tectonic plate motion, in Ocherki geofizicheskikh issledovanii (Geophysical Research Essays), Moscow: OIFZ RAN, 2003, pp. 363–368.Google Scholar
  93. Prilepin, M.T. and Shevchenko, V.I., Geodynamics of the Mediterranean region from GPS data, Geotektonics, 2005, vol. 39, no. 6, pp. 437–447.Google Scholar
  94. Rebai, S., Philip, H., and Taboada, A., Modern tectonic stress field in the Mediterranean region: evidence for variation in stress at different scales, Geophys. J. Int., 1992, vol. 110, pp. 106–140.Google Scholar
  95. Reilinger, R., McClusky, S., Vernant, Ph., Lawrence, Sh., Ergintav, S., Carmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., et al., GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res., 2006, vol. 111, no. B5, p. B05411.Google Scholar
  96. Robertson, A.H.F. and Dixon, J.E., Introduction: aspects of the geological evolution of the Eastern Mediterranean, in The Geological Evolution of the Eastern Mediterranean, Geol. Soc. Spec. Publ., 1984, vol. 17, pp. 1–74.Google Scholar
  97. Ronov, A.B. and Yaroshevskii, A.A., New model of chemical structure of the Earth’s crust, Geokhimiya, 1976, no. 12, pp. 1763–1795.Google Scholar
  98. Ronov, A.B., Yaroshevskii, A.A., and Migdisov, A.A., Khimicheskoe stroenie zemnoi kory i geokhimicheskii balans glavnykh elementov (Chemical Structure of the Earth’s Crust and the Geochemical Balance of Major Elements), Moscow: Nauka, 1990.Google Scholar
  99. Ronov, A.B., Stratisfera ili osadochnaya obolochka Zemli (kolichestvennoe issledovanie) (Stratisphere or Sedimentary Envelope of the Earth: A Quantitative Study), Moscow: Nauka, 1993.Google Scholar
  100. Royden, L.H., Horvath, F., and Burchfiel, B.C., Transform faulting, extension, and subduction in the Carpathian Pannonian region, Bull. Geol. Soc. Am., 1982, vol. 93, no. 8, pp. 717–725.Google Scholar
  101. Royden, L.H., The tectonic expression of slab pull at continental convergent boundaries, Tectonics, 1993a, vol. 12, no. 2, pp. 303–325.Google Scholar
  102. Royden, L.H., Evolution of retreating subduction boundaries formed during continental collision, Tectonics, 1993b, vol. 12, no. 3, pp. 629–638.Google Scholar
  103. Sella, G.F., Dixon, T., and Mao, A., REVEL: A model for present plate velocities from space geodesy, J. Geophys. Res., 2002, vol. 107, no. B4, ETG11, pp. 1–32.Google Scholar
  104. Sengor, A.M.C., Gorur, N., and Saroglu, F., Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, Spec. Publ.-Soc. Econ. Paleontol. Mineral., 1985, vol. 37, pp. 227–264.Google Scholar
  105. Serpelloni, E., Anzidei, M., Baldi, P., Casula, G., Galvani, A., Pesci, A., and Riguzzi, F., Geodetic deformations in the Central-Southern Apennines (Italy) from repeated GPS surveys, Annali di Geofisica, 2001, vol. 44, no. 3, pp. 627–647.Google Scholar
  106. Serpelloni, E., Anzidei, M., Baldi, P., Casula, G., and Galvani, A., Crustal velocity and strain-rate fields in Italy and surrounding regions: new results from analysis of permanent and non-permanent GPS networks, Geophys. J. Int., 2005, vol. 161, no. 3, pp. 861–880.Google Scholar
  107. Shevchenko, V.I., Proiskhozhdenie struktur gorizontal’nogo szhatiya v skladchatom sooruzhenii (Origin of the Structures of Horizontal Compression in Folded Regions), Moscow: Nauka, 1984.Google Scholar
  108. Shevchenko, V.I., Formation conditions of the Upper Jurassic chemogenic sediments in Pre-Caucasia, Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol., 1992, no. 2, pp. 104–118.Google Scholar
  109. Shevchenko, V.I., On the probable role of some processes of lithogenesis in the formation of tectonic dislocations of subhorizontal compression, Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol., 1999, no. 3, pp. 14–25.Google Scholar
  110. Shevchenko, V.I., Guseva, T.V., Lukk, A.A., Mishin, A.V., Prilepin, M.T., Reilinger, R.E., Hamburger, M.W., Shempelev, A.G., and Yunga, S.L., Recent geodynamics of the Caucasus Mountains from GPS and seismological evidence, Izv., Phys. Solid Earth, 1999, vol. 35, no. 9, pp. 691–704.Google Scholar
  111. Shevchenko, V.I., Lukk, A.A., and Prilepin, M.T., Geodynamics of the Aegean Sea and surrounding mountains in the Mediterranean Mobile Belt, Izv., Phys. Solid Earth, 2000, vol. 36, no. 10, pp. 833–849.Google Scholar
  112. Shevchenko, V.I. and Lukk, A.A., “Subduction zones” constrained by traveltime tomography in the Aegean-Tyrrhenian mantle of the Mediterranean Mobile Belt, Izv., Phys. Solid Earth, 2002, vol. 38, no. 6, pp. 510–519.Google Scholar
  113. Sholpo, V.N., Al’piiskaya geodinamika Bol’shogo Kavkaza (Alpine Geodynamics of the Greater Caucasus), Moscow: Nedra, 1978.Google Scholar
  114. Sholpo, V.N., Rogozhin, E.A., and Goncharov, M.A., Skladchatost’ Bol’shogo Kavkaza (Folding of the Greater Caucasus), Moscow: Nauka, 1993.Google Scholar
  115. Somov, V.I., The results of geodetic studies of the presentday tectonic activity in the Soviet part of the Carpathian region, Prognoz Zemletryasenii, 1989, no. 11, pp. 168–181.Google Scholar
  116. Somov, V.I., Dzhun’, I.V., Rakhimova, I.Sh., Skryl’, V.A., and Evseeva, E.M., Statisticheskie metody v sovremennoi geodinamike Karpato-Dinarskogo regiona (Statistical Methods in the Present-Day Geodynamics of the Carpathian-Dinaric Region), Kiev: Naukova dumka, 1992.Google Scholar
  117. SOPAC Refined Velocities (m/yr). Most Recent Available Epoch for Each Site.
  118. Spakman, W., Wortel, M.J.R., and Vlaar, N.J., The Hellenic subduction zone: a tomograhic image and its geodynamic implications, Geophys. Res. Lett., 1988, vol. 15, no. 1, pp. 60–63.Google Scholar
  119. Spakman, W., Tomographic images of the upper mantle below Central Europe and the Mediterranean, Terra Nova, 1990, vol. 2, no. 6, pp. 542–553.Google Scholar
  120. Stich, D., Ammon, C.J., and Morales, J., Moment tensor solutions for small and moderate earthquakes in the Ibero-Maghreb region, J. Geophys. Res., 2003, vol. 108, no. B3, ESE7, pp. 1–20.Google Scholar
  121. Stich, D., Serpelloni, E., de Lis, Mancilla., and Morales, J., Kinematics of the Iberia-Maghreb plate contact from seismic moment tensors and GPS observations, Tectonophysics, 2006, vol. 426, nos. 3–4, pp. 295–317.Google Scholar
  122. Tektonicheskaya karta Evrazii. 1: 5000000 (The 1:5000000 Tectonic Map of Eurasia), Moscow: AN SSSR, Ministerstvo geologii SSSR, 1966.Google Scholar
  123. Trifonov, V.G., Neotektonika Evrazii. Tr. Geol. Inst. Rus. Akad. Nauk., vyp. 514 (Neotectonics of Eurasia. Trans. Geol. Inst. Rus. Acad. Sci., vol. 514), Moscow: Nauchnyi mir, 1999.Google Scholar
  124. Twenhofel, W.H., A Treatise on Sedimentation, London: Balliere, Tindall, and Cox, 1925.Google Scholar
  125. Tyrrell, G.W., The Principles of Petrology: An Introduction to the Science of Rocks, 2nd ed., London: Methuen, 1930.Google Scholar
  126. Van der Hoeven, A.G.A., Mocanu, V., Spakman, W., Nutto, M., Nuckelt, A., Matenco, L., Munteanu, L., Marcu, C., and Ambrosius, B.A.C., Observation of presentday tectonic motion in the Southeastern Carpathians: Results of the ISES/CRC-461 GPS measurements, Earth Planet. Sci. Lett., 2005, vol. 239, pp. 177–184.Google Scholar
  127. Vernant, Ph., Nilforoushan, F., Hatzfeld, D., Abbassi, M.R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., and Chery, J., Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and Northern Oman, Geophys. J. Int., 2004, vol. 157, no. 1, pp. 381–398.Google Scholar
  128. Vernant, Ph., Fadil, A., Mourabit, T., Ouazar, D., Koulali, A., Davila, J.M., Garate, J., McClusky, J., and Reilinger, R., Geodetic constraints on active tectonics of the Western Mediterranean: implication for the kinematics and dynamics of the Nubia-Eurasia plate boundary zone, J. Geodyn., 2010, vol. 49, pp. 123–129.Google Scholar
  129. Vigny, C., Chery, J., Duquesnoy, T., Jouanne, F., Ammann, J., Anzidei, M., Avouac, J.-P., et al., GPS network monitors the Western Alps’ deformation over a five-year period: 1993–1998, J. Geod., 2002, vol. 76, pp. 63–76.Google Scholar
  130. Waldschmidt, W.A., Cementing materials in sandstones and their influence on migration and accumulation of oil and gas, Bull. Amer. Assoc. Petrol. Geol., 1941, vol. 25, no. 10, pp. 1839–1879.Google Scholar
  131. Yaroshevskii, A.A., Dynamical model of geochemical cycle, in Razdelenie elementov i izotopov v geokhimicheskikh protsessakh (Differentiation of Elements and Isotopes in Geochemical Processes), Moscow: Nauka, 1979, pp. 15–34.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. I. Shevchenko
    • 1
  • A. A. Lukk
    • 1
  • M. T. Prilepin
    • 1
  • R. E. Reilinger
    • 2
  1. 1.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  2. 2.Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations