Inversion of seismic and gravity data for the composition and core sizes of the Moon

  • V. A. Kronrod
  • O. L. Kuskov


We model the internal structure of the Moon, initially homogeneous and later differentiated due to partial melting. The chemical composition and the internal structure of the Moon are retrieved by the Monte-Carlo inversion of the gravity (the mass and the moment of inertia), seismic (compressional and shear velocities), and petrological (balance equations) data. For the computation of phase equilibrium relations and physical properties, we have used a method of minimization of the Gibbs free energy combined with a Mie-Gr@uneisen equation of state within the CaO-FeO-MgO-Al2O3-SiO2 system. The lunar models with a different degree of constraints on the solution are considered. For all models, the geophysically and geochemically permissible ranges of seismic velocities and concentrations in three mantle zones and the sizes of Fe-10%S core are estimated. The lunar mantle is chemically stratified; different mantle zones, where orthopyroxene is the dominant phase, have different concentrations of FeO, Al2O3, and CaO. The silicate portion of the Moon (crust + mantle) may contain 3.5–5.5% Al2O3 and 10.5–12.5% FeO. The chemical boundary between the middle and the lower mantle lies at a depth of 620–750 km. The lunar models with and without a chemical boundary at a depth of 250–300 km are both possible. The main parameters of the crust, the mantle, and the core of the Moon are estimated. At the depths of the lower mantle, the P and S velocities range from 7.88 to 8.10 km/s and from 4.40 to 4.55 km/s, respectively. The radius of a Fe-10%S core is 340 ± 30 km.


the Moon composition temperature internal structure seismic velocities 


  1. Arkani-Hamed, J., Viscosity of the Moon, The Moon, 1973, vol. 6, pp. 100–111.CrossRefGoogle Scholar
  2. Binder, A.B., The Initial Thermal State of the Moon, in Origin of the Moon, Hartmann, W.K. et al., Eds., Houston: Lunar Planet. Inst, 1986, pp. 425–433.Google Scholar
  3. Delano, J.W., Pristine Lunar Glasses: Criteria Data, and Implications, J. Geophys. Res., 1986, vol. 91, no. B4, pp. D201–D213.CrossRefGoogle Scholar
  4. Demidova, S.I., Nazarov, M.A., Lorents, K.A., et al., Chemical Composition of Lunar Meteorites and the Lunar Crust, Petrologiya, 2007, vol. 15, pp. 416–437 [Petrology (Engl. Transl.), 2007, vol. 15, no. 4, pp. 386–407].Google Scholar
  5. Elkins, L.T., Fernandes, V.A., Delano, J.W., and Grove, T.L., Origin of Lunar Ultramafic Green Glasses: Constraints from Phase Equilibrium Studies, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 2339–2350.CrossRefGoogle Scholar
  6. Elkins-Tanton, L.T., Chatterjee, N., and Grove, T.L., Experimental and Petrologic Constraints on Lunar Differentiation from the Apollo 15 Green Picritic Glasses, Meteorit. Planet. Sci, 2003, vol. 38, pp. 515–527.CrossRefGoogle Scholar
  7. Gagnepain-Beyneix, J., Lognonné, P., Chenet, H., et al., A Seismic Model of the Lunar Mantle and Constraints on Temperature and Mineralogy, Phys. Earth Planet. Inter., 2006, vol. 159, pp. 140–166.CrossRefGoogle Scholar
  8. Galimov, E.M., On the Origin of Lunar Material, Geokhimiya, 2004, no. 7, pp. 691–706 [Geochem. Int. (Engl. Transl.), 2004, vol. 42, no. 7, pp. 595–609].Google Scholar
  9. Goins, N.R., Dainty, A.M., and Toksoz, M.N., Lunar Seismology: The Internal Structure of the Moon, J. Geophys. Res., 1981, vol. 86, pp. 5061–5074.CrossRefGoogle Scholar
  10. Head, J.W. and Wilson, L., Lunar Mare Volcanism: Stratigraphy, Eruption Conditions, and Evolution of Secondary Crusts, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 2155–2176.CrossRefGoogle Scholar
  11. Hess, P.C. and Parmentier, E.M., A Model for the Thermal and Chemical Evolution of the Moon’s Interior: Implications for the Onset of Mare Volcanism, Earth Planet. Sci. Lett., 1995, vol. 134, pp. 501–514.CrossRefGoogle Scholar
  12. Hood, L.L. and Jones, J.H., Geophysical Constraints on Lunar Bulk Composition and Structure: A Reassessment, J. Geophys. Res., 1987, vol. 92E, pp. 396–410.CrossRefGoogle Scholar
  13. Hood, L.L. and Zuber, M., Recent Refinements in Geophysical Constraints on Lunar Origin and Evolution, in Origin of the Earth and Moon, Righter K., Canup R., Eds., Tucson: Univ. Arizona Press, 2000, pp. 397–412.Google Scholar
  14. James, O.B., Rocks of the Early Lunar Crust, Proc. 11th Lunar Planet. Sci. Conf., Geochim. Cosmochim. Acta Suppl. (Houston, 1980), New York: Pergammon Press, 1980, vol. 1, pp. 365–393.Google Scholar
  15. Jones, J.H. and Delano, J.W., A Three-Component Model for the Bulk Composition of the Moon, Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 513–527.CrossRefGoogle Scholar
  16. Khan, A., Mosegaard, K., and Rasmussen, K.L., A New Seismic Velocity Model for the Moon from a Monte Carlo Inversion of the Apollo Lunar Seismic Data, Geophys. Rev. Lett., 2000, vol. 27, pp. 1591–1594.CrossRefGoogle Scholar
  17. Khan, A. and Mosegaard, K., An Inquiry Into the Lunar Interior: a Nonlinear Inversion of the Apollo Lunar Seismic Data, J. Geophys. Res, 2002, vol. 107, no. E6, pp. 5036–5059.CrossRefGoogle Scholar
  18. Khan, A., Connolly, J.A.D., Olsen, N., and Mosegaard, K., Constraining the Composition and Thermal State of the Moon from An Inversion of Electromagnetic Lunar Day-Side Transfer Functions, Earth Planet. Sci. Lett., 2006a, vol. 248, pp. 579–598.CrossRefGoogle Scholar
  19. Khan, A., Maclennan, J., Taylor, S. R., and Connolly, J. A. D. Are the Earth and the Moon Compositionally Alike? Inferences on Lunar Composition and Implications for Lunar Origin and Evolution from Geophysical Modeling, J. Geophys. Res., 2006b, vol. 111, p. E05005, doi:10.1029/2005JE002608.CrossRefGoogle Scholar
  20. Khan, A., Connolly, J.A.D., Maclennan, J., and Mosegaard, K., Joint Inversion of Seismic and Gravity Data for Lunar Composition and Thermal State, Geophys. J. Int., 2007, vol. 168, pp. 243–258.CrossRefGoogle Scholar
  21. Kirk, R.L. and Stevenson, D.J., The Competition Between Thermal Contraction and Differentiation in the Stress History of the Moon, J. Geophys. Res., 1989, vol. 94, pp. 12 133–12 144.CrossRefGoogle Scholar
  22. Konopliv, A.S., Binder, A.B., Hood, L.L., et al., Improved Gravity Field of the Moon from Lunar Prospector, Science, 1998, vol. 281, pp. 1476–1480.CrossRefGoogle Scholar
  23. Kronrod, V.A. and Kuskov, O.L., Chemical Composition, Temperature, and Radius of the Lunar Core from Geophysical Evidence, Geokhimiya, 1997, no. 2, pp. 4–12 [Geochem. Int. (Engl. Transl.), 1997, vol. 35, no. 2, pp. 104–112].Google Scholar
  24. Kronrod, V.A. and Kuskov, O.L., Temperature in the Moon’s Mantle from Seismic Data, Fiz. Zemli, 1999, no. 5, pp. 363–371 [Izv. Phys. Earth (Engl. Transl.), 1999, vol. 35, no. 5, pp. 363–371].Google Scholar
  25. Kronrod, V.A. and Kuskov, O., L., Modeling of the Thermal Structure of Continental Lithosphere, Fiz. Zemli, 2007, no. 1, pp. 96–107 [Izv. Phys. Earth (Engl. Transl.), 2007, vol. 43, no. 1, pp. 91–101].Google Scholar
  26. Kuskov, O.L., Constitution of the Moon: 4. Composition of the Mantle from Seismic Data, Phys. Earth Planet. Inter., 1997, vol. 102, pp. 239–257.CrossRefGoogle Scholar
  27. Kuskov, O.L. and Kronrod, V.A., Constitution of the Moon: 5. Constraints on Composition, Density, Temperature, and Radius of a Core, Phys. Earth Planet. Inter., 1998a, vol. 107, pp. 285–306.CrossRefGoogle Scholar
  28. Kuskov, O.L. and Kronrod, V.A., A Model of the Chemical Differentiation of the Moon, Petrologiya, 1998b, vol. 6, pp. 616–633 [Petrology (Engl. Transl.), 1998b, vol. 6, no. 6, pp. 564–582].Google Scholar
  29. Kuskov, O.L. and Kronrod, V.A., The Moon: Chemical Composition and Internal Structure, Solar Syst. Res., 1999, vol. 33, pp. 382–391.Google Scholar
  30. Kuskov, O.L. and Kronrod, V.A., Resemblance and Difference Between Constitution of the Moon and Io, Planet. Space Sci., 2000, vol. 48, pp. 717–726.CrossRefGoogle Scholar
  31. Kuskov, O.L. and Kronrod, V.A., Core Sizes and Internal Structure of the Earth’s and Jupiter’s Satellites, Icarus, 2001, vol. 151, pp. 204–227.CrossRefGoogle Scholar
  32. Kuskov, O.L., Kronrod, V.A., and Hood, L.L., Geochemical Constraints on the Seismic Properties of the Lunar Mantle, Phys. Earth Planet. Inter., 2002, vol. 134, pp. 175–189.CrossRefGoogle Scholar
  33. Kuskov, O.L., Kronrod, V.A., and Annersten, H., Inferring Upper-Mantle Temperatures from Seismic and Geochemical Constraints: Implications for Kaapvaal Craton, Earth Planet. Sci. Lett., 2006, vol. 244, pp. 133–154.CrossRefGoogle Scholar
  34. Kuskov, O.L., Dorofeeva, V.A., Kronrod, V.A., and Makalkin, A.B., Sistemy Yupitera i Saturna: formirovanie, sostav i vnutrennee stroenie krupnykh sputnikov (Jupiter and Saturn Systems: Formation, Composition, and Internal Structure of Large Satellites), Moscow: Izd-vo LKI, 2009.Google Scholar
  35. Kuskov, O.L. and Kronrod, V.A., Geochemical Constraints on the Model of the Composition and Thermal Conditions of the Moon according to Seismic Data, Fiz. Zemli, 2009, no. 9, pp. 25–40 [Izv. Phys. Earth (Engl. Transl.), 2009, vol. 45, no. 9, pp. 753–768].Google Scholar
  36. Latham, G., Ewing, M., Dorman, J., et al., Moonquakes and Lunar Tectonism, The Moon, 1972, vol. 4, pp. 373–382.CrossRefGoogle Scholar
  37. Lognonné, P., Gagnepain-Beyneix, J., and Chenet, H., A New Seismic Model of the Moon: Implications for Structure, Thermal Evolution and Formation of the Moon, Earth Planet. Sci. Lett., 2003, vol. 211, pp. 27–44.CrossRefGoogle Scholar
  38. Lognonné, P., Planetary Seismology, Annu. Rev. Earth Planet. Sci, 2005, vol. 33, pp. 571–604.CrossRefGoogle Scholar
  39. Longhi, J., Experimental Petrology and Petrogenesis of Mare Volcanics, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 2235–2251.CrossRefGoogle Scholar
  40. McDonough, W.F. and Sun, S.-s., The Composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.CrossRefGoogle Scholar
  41. Nakamura, Y. and Koyama, J., Seismic Q of the Lunar Upper Mantle, J. Geophys. Res., 1982, vol. 87, pp. 4855–4861.CrossRefGoogle Scholar
  42. Nakamura, Y., Seismic Velocity Structure of the Lunar Mantle, J. Geophys. Res., 1983, vol. 88, pp. 677–686.CrossRefGoogle Scholar
  43. O’Neill, H.St.C., The Origin of the Moon and the Early History of the Earth-A Chemical Model. Part 1: The Moon, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 1135–1157.CrossRefGoogle Scholar
  44. Ringwood, A.E. and Essene, E., Petrogenesis of Apollo 11 Basalts, Internal Constitution and Origin of the Moon, Proc. Apollo 11th Lunar Planet. Sci. Conf., Geochim. Cosmochim. Acta Suppl. (Houston, 1970), Levinson, A.A., Ed., New York: Pergammon Press, 1970, vol. 1, pp. 769–799.Google Scholar
  45. Ringwood, A.E., Origin of the Earth and Moon, New York: Springer, 1979.Google Scholar
  46. Sambridge, M. and Mosegaard, K., Monte Carlo Methods in Geophysical Inverse Problems, Rev. Geophys., 2002, vol. 40, no. 3, pp. 1–29.CrossRefGoogle Scholar
  47. Shearer, C.K. and Papike, J.J., Basaltic Magmatism on the Moon: A Perspective from Picritic Glass Beads, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 4785–4812.CrossRefGoogle Scholar
  48. Shearer, C.K. and Papike, J.J., Magmatic Evolution of the Moon, Am. Mineral., 1999, vol. 84, pp. 1469–1494.Google Scholar
  49. Solomon, S.C., On the Early Thermal State of the Moon, in Origin of the Moon, Hartmann, W.K. et al., Eds., Houston: LPI, 1986, pp. 435–452.Google Scholar
  50. Taylor, S.R., Planetary Science: A Lunar Perspective, Houston: LPI, 1982.Google Scholar
  51. Taylor, S.R., The Origin of the Moon: Geochemical Considerations, in Origin of the Moon, Hartmann, W.K. et al., Eds., Houston: LPI, 1986, pp. 125–143.Google Scholar
  52. Taylor, S.R., Taylor, G.J., and Taylor, L.A., The Moon: A Taylor Perspective, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 5904–5918.CrossRefGoogle Scholar
  53. Vanyan, L.L. and Egorov, I.V., The Lunar Lithosphere from Electromagnetic Sounding Data, The Moon, 1977, vol. 17, pp. 3–9.CrossRefGoogle Scholar
  54. Wänke, H. and Dreibus G., Geochemical Evidence for the Formation of the Moon by Impact-Induced Fission of the Proto-Earth, in Origin of the Moon, Hartmann, W.K. et al., Eds., Houston: LPI, 1986, p. 649–672.Google Scholar
  55. Wieczorek, M.A. and Phillips, R.J., The “Procellarum KREEP Terrane”: Implications for Mare Volcanism and Lunar Evolution, J. Geophys. Res., 2000, vol. 105, no. E8, pp. 20 417–20 430.CrossRefGoogle Scholar
  56. Wieczorek, M.A., Jolliff, B.L., Khan, A., et al., The Constitution and Structure of the Lunar Interior, Rev. Mineral. Geochem., 2006, vol. 60, no. 1, pp. 221–364.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. A. Kronrod
    • 1
  • O. L. Kuskov
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations