Izvestiya, Physics of the Solid Earth

, Volume 43, Issue 7, pp 583–591 | Cite as

Estimates of the energy of surface waves from atmospheric explosions and the source parameters of the Tunguska event

  • V. V. Svettsov


The results of the numerical modeling of experimental concentrated atmospheric explosions, both nuclear and chemical, are presented. The surface pressure spectra are calculated and constraints are gained on their relation to the energy of surface seismic waves and to earthquake magnitudes. For a more accurate determination of the source parameters of the Tunguska event (June 30, 1908), atmospheric explosions at various altitudes and vertical falls of meteoroids are modeled numerically and their seismic effect is estimated.

PACS numbers

91.30.Rz 96.25.Pq 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Action of a Nuclear Explosion (Voenizdat, Moscow, 1963) [in Russian].Google Scholar
  2. 2.
    K. Aki and P. Richards, Quantitative Seismology: Theory and Methods (Freeman, San Francisco, 1980; Mir, Moscow, 1983), Vol. 1.Google Scholar
  3. 3.
    M. Bäth, Seismic Records of Explosions—Especially Nuclear Explosions (Försvarets Forskningsanstalt Avdelning 4 Rapports A 4270-4721, 4) (Res. Inst. National Defense, Uppsala, Stockholm, 1962).Google Scholar
  4. 4.
    A. Ben-Menahem, “Source Parameters of the Siberian Explosion of June 30, 1908, from Analysis and Synthesis of Seismic Signals at Four Stations,” Phys. Earth Planet. Inter. 11(1), 1–35 (1975).CrossRefGoogle Scholar
  5. 5.
    V. A. Bronshten, The Tunguska Meteorite: The History of Research (Sel’yanov, Moscow, 2000) [in Russian].Google Scholar
  6. 6.
    S. Crampin, “Higher-Mode Seismic Surface Waves from Atmospheric Nuclear Explosions over Novaya Zemlya,” J. Geophys. Res. 71(12), 2951–2958 (1966).Google Scholar
  7. 7.
    V. G. Fast, “Statistical Analysis of the Tunguska Event Parameters,” in Problem of the Tunguska Meteorite (TGU, Tomsk, 1967), Vol. 2, pp. 40–61 [in Russian].Google Scholar
  8. 8.
    K. P. Florenskii, “Preliminary Results of the Multidisciplinary Tunguska Meteorite Expedition of 1961,” Meteoritika 23, 3–29 (1963).Google Scholar
  9. 9.
    R. V. Jones, “Sub-Acoustic Waves from Large Explosions,” Nature 193(4812), 229–232.Google Scholar
  10. 10.
    S. Ya. Kogan, “On the Relation between Atmospheric Explosion Parameters and Seismic Energy,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 4, 9–22 (1965).Google Scholar
  11. 11.
    S. Ya. Kogan, Seismic Energy and Methods of Its Determination (Nauka, Moscow, 1975) [in Russian].Google Scholar
  12. 12.
    V. P. Korobeinikov, P. I. Chushkin, and L. V. Shurshalov, “Combined Modeling of the Flight and Atmospheric Explosion of a Meteoritic Body,” Astron. Vestn. 25(3), 327–343 (1991).Google Scholar
  13. 13.
    V. P. Korobeinikov, L. V. Shurshalov, V. I. Vlasov, and I. V. Semenov, “Complex Modeling of the Tunguska Catastrophe,” Planet. Space Sci. 46(2/3), 231–244 (1998).CrossRefGoogle Scholar
  14. 14.
    N. M. Kuznetsov, Thermodynamic Functions and Shock Adiabats of Air at High Temperatures (Mashinostroenie, Moscow, 1965) [in Russian].Google Scholar
  15. 15.
    E. I. Lyuke, “Experimental Study of the Rayleigh Wave Energy Dependence on the Power and Altitude of an Atmospheric Explosion,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 2, 32–40 (1967a).Google Scholar
  16. 16.
    E. I. Lyuke, “Surface Wave Energy Dependence on the Parameters of an Atmospheric Explosion (Comparison of Theoretical and Experimental Results),” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 4, 14–25 (1967b).Google Scholar
  17. 17.
    E. V. Maslov, “On the Altitude and Power of the Tunguska Meteorite Explosion,” in Tunguska Meteorite (TGU, Tomsk, 1963), pp. 105–112 [in Russian].Google Scholar
  18. 18.
    Nuclear Explosions in the USSR (IzdAT, Moscow, 1997) [in Russian].Google Scholar
  19. 19.
    V. M. Ovchinnikov and I. P. Pasechnik, “The Earthquake Produced by the Explosion of the Chulymskii Fireball,” Meteoritika 47, 10–20 (1988).Google Scholar
  20. 20.
    I. P. Pasechnik, Characteristics of Seismic Waves from Nuclear Explosions and Earthquakes (Nauka, Moscow, 1970) [in Russian].Google Scholar
  21. 21.
    I. P. Pasechnik, “Estimation of the Tunguska Meteorite explosion Parameters from Seismic and Microbarographic Data,” in Cosmic Matter in the Earth (Nauka, Novosibirsk, 1976), pp. 24–54 [in Russian].Google Scholar
  22. 22.
    M. V. Saks, S. V. Sinyukhina, and A. S. Aleshin, “Estimation of the Ground Inelasticity Effect on the Characteristics of Earthquake-Induced Ground Motions,” Fiz. Zemli, No. 10, 41–47 (2003) [Izvestiya, Phys. Solid Earth 39, 820–826 (2003)].Google Scholar
  23. 23.
    V. V. Shuvalov, “Multi-Dimensional Hydrodynamic Code SOVA for Interfacial Flows: Application to the Thermal Layer Effect,” Shock Waves 9(6), 381–390 (1999).CrossRefGoogle Scholar
  24. 24.
    V. V. Shuvalov and N. A. Artemieva, “Numerical Modeling of Tunguska-Like Impacts,” Planet. Space Sci. 50(2), 181–192 (2002).CrossRefGoogle Scholar
  25. 25.
    V. V. Svettsov, “An Optimal Numerical Method for One-Dimensional Problems in Radiation Gas Dynamics,” Zh. Vychisl. Mat. Mat. Fiz. 34(3), 432–445 (1994).Google Scholar
  26. 26.
    M. N. Toksöz and A. Ben-Menahem, “Excitation of Seismic Surface Waves by Atmospheric Nuclear Explosions,” J. Geophys. Res. 69(8), 1639–1648 (1964).Google Scholar
  27. 27.
    N. V. Vasil’ev, The Tunguska Meteorite: A Cosmic Phenomenon of Summer of 1908 (NP ID “Russkaya panorama,” Moscow, 2004) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. V. Svettsov
    • 1
  1. 1.Institute of Geosphere DynamicsRussian Academy of SciencesMoscowRussia

Personalised recommendations