Why the Sacramento Delta area differs from other parts of the great valley: Numerical modeling of thermal structure and thermal subsidence of forearc basins

  • V. O. Mikhailov
  • T. Parsons
  • R. W. Simpson
  • E. P. Timoshkina
  • C. Williams


Data on present-day heat flow, subsidence history, and paleotemperature for the Sacramento Delta region, California, have been employed to constrain a numerical model of tectonic subsidence and thermal evolution of forearc basins. The model assumes an oceanic basement with an initial thermal profile dependent on its age subjected to refrigeration caused by a subducting slab. Subsidence in the Sacramento Delta region appears to be close to that expected for a forearc basin underlain by normal oceanic lithosphere of age 150 Ma, demonstrating that effects from both the initial thermal profile and the subduction process are necessary and sufficient. Subsidence at the eastern and northern borders of the Sacramento Valley is considerably less, approximating subsidence expected from the dynamics of the subduction zone alone. These results, together with other geophysical data, show that Sacramento Delta lithosphere, being thinner and having undergone deeper subsidence, must differ from lithosphere of the transitional type under other parts of the Sacramento Valley. Thermal modeling allows evaluation of the rheological properties of the lithosphere. Strength diagrams based on our thermal model show that, even under relatively slow deformation (10−17 s−1), the upper part of the delta crystalline crust (down to 20–22 km) can fail in brittle fashion, which is in agreement with deeper earthquake occurrence. Hypocentral depths of earthquakes under the Sacramento Delta region extend to nearly 20 km, whereas, in the Coast Ranges to the west, depths are typically less than 12–15 km. The greater width of the seismogenic zone in this area raises the possibility that, for fault segments of comparable length, earthquakes of somewhat greater magnitude might occur than in the Coast Ranges to the west.

PACS numbers



  1. 1.
    W. H. Bakun, “Seismic Activity of the San Francisco Bay Region.” Bull. Seismol. Soc. Am. 89, 764–784 (1999).Google Scholar
  2. 2.
    S. F. Batsanin and A. Ya. Golmshtok, “On Thermal Evolution of Oceanic Lithosphere with Sedimentation,” Okeanology XXIV(4), 654–658 (1986).Google Scholar
  3. 3.
    H. M. Benz, G. Zandt, and D. H. Oppenheimer, “Lithospheric Structure of Northern California from Teleseismic Images of the Upper Mantle,” J. Geophys. Res. 97, 4791–4807 (1992).Google Scholar
  4. 4.
    L. A. Beyer, Summary of Geology and Petroleum Plays Used to Assess Undiscovered Recoverable Petroleum Resources of Sacramento Basin Province, California (USGS Spec. Rep. 88-4500-oo, 1988).Google Scholar
  5. 5.
    L. A. Beyer and J. A. Bartow, Summary of Geological and Petroleum Plays Used to Assess Undiscovered Recoverable Petroleum Resources, San Joaquin Basin Province, California (USGS Open File Rep. 87-450-Z, 1987).Google Scholar
  6. 6.
    R. G. Bohannon and T. Parsons, “Tectonic Implications of Post-30 Ma Pacific and North American Relative Plate Motion,” Geology 107, 937–959 (1995).Google Scholar
  7. 7.
    E. E. Brabb, C. L. Powell II, and T. M. Brocher, Preliminary Compilation of Data for Selected Oil Wells in Northern California (USGS Open File Rep. 01-152, 2001).Google Scholar
  8. 8.
    S. J. H. Buiter, R. Govers, and M. J. R. Wortel, “A Modelling Study of Vertical Displacements at Convergent Plate Margins,” Geophys. J. Int. 147, 415–427 (2001).CrossRefGoogle Scholar
  9. 9.
    P. J. Coney and S. J. Reynolds, “Cordilleran Benioff Zones,” Nature 279, 403–406 (1977).CrossRefGoogle Scholar
  10. 10.
    J. H. Davis, “Simple Analytic Model for Subduction Zone Thermal Structure,” Geophys. J. Int. 139, 823–828 (1999).CrossRefGoogle Scholar
  11. 11.
    E. E. Davis and C. R. B. Lister, “Fundamentals of Ridge Crest Topography,” Earth Planet. Sci. Lett. 21, 401–413 (1974).CrossRefGoogle Scholar
  12. 12.
    J. P. Devaux, L. Fleitout, G. Schubert, and Ch. Anderson, “Stress in a Subducting Slab in the Presence of a Metastable Olivine Wedge,” J. Geophys. Res. 105, 13 365–13 373 (2000).CrossRefGoogle Scholar
  13. 13.
    W. R. Dickinson and W. S. Snyder, “Geometry of Subducted Slabs Related to San Andreas Transform,” J. Geol. 87, 609–627 (1979).CrossRefGoogle Scholar
  14. 14.
    W. R. Dickinson, R. A. Armin, N. Beckvar, et al., “Cenozoic Basin Development of Coastal California,” in Cenozoic Development of Coastal California: Rubey Vol. VI, Ed. by R.V. Ingersol and W.G. Ernst (Prentice-Hall, New Jersey, 1987), pp. 1–23.Google Scholar
  15. 15.
    T. A. Dumitru, “Constraints on Uplift in the Franciscan Subduction Complex from Apatite Fission Track Analysis,” Tectonics 8, 197–220 (1989).Google Scholar
  16. 16.
    T. Dumitru, “Effects of Subduction Parameters on Geothermal Gradients in Forearcs, with Application to Franciscan Subduction in California,” J. Geophys. Res. 96, 621–641 (1991).Google Scholar
  17. 17.
    J. P. Eaton, “Crustal Structure from California to Eureka, Nevada, from Seismic-Refraction Measurements,” J. Geophys. Res. 68, 5789–5806 (1963).Google Scholar
  18. 18.
    W. L. Ellsworth, G. C. Beroza, B. R. Julian, et al., “Seismicity of the San Andreas Fault System in Central California: Application of the Double-Difference Location Algorithm on a Regional Scale,” Eos Trans. AGU 81, 919 (2000).Google Scholar
  19. 19.
    D. C. Engebretson, A. Cox, and R. G. Gordon, “Relative Motions between Oceanic and Continental Plates in the Pacific Basin,” Geol. Soc. Am. Spec. Paper 206, 148–165 (1985).Google Scholar
  20. 20.
    B. Evans and V. Kohlstedt, “Rheology of Rocks,” in Rock Physics and Phase Relations. A Handbook of Physical Constants, AGU Reference Shelf 3, Ed. by T. J. Ahrens (1995), pp. 148–165.Google Scholar
  21. 21.
    K. Furlong, “Lithospheric Behavior with Triple Junction Migration: An Example Based on the Mendocino Triple Junction,” Phys. Earth Planet. Int. 36, 213–223 (1984).CrossRefGoogle Scholar
  22. 22.
    N. J. Godfrey, B. C. Beaudoin, S. L. Klemperer, and Mendocino Working Group, “Ophiolitic Basement to the Great Valley Forearc Basin, California, from Seismic and Gravity Data: Implications for Crustal Growth at the North America Continental Margin,” Geology 108, 1536–1562 (1997).Google Scholar
  23. 23.
    S. A. Graham, “Tectonic Controls on Petroleum and Hydrocarbon Occurrence, Sacramento Valley, California,” in Cenozoic Development of Coastal California: Rubey Volume VI, Ed. by W. G. Ernst (1987), pp. 47–63.Google Scholar
  24. 24.
    B. U. Haq, J. Hardenbol, and P. R. Vail, “Chronology of Fluctuating Sea Levels since the Triassic (250 Ma Ago to Present),” Science 235, 1156–1167 (1987).CrossRefGoogle Scholar
  25. 25.
    R. N. Hey, H. W. Menard, T. M. Atwater, and D. W. Caress, “Changes in Direction of Seafloor Spreading Revisited,” J. Geophys. Res. 93, 2803–2811 (1988).Google Scholar
  26. 26.
    W. S. Holbrook and W. D. Mooney, “The Crustal Structure of the Axis of the Great Valley, California, from Seismic Refraction Measurements,” Tectonophysics 140, 49–63 (1987).CrossRefGoogle Scholar
  27. 27.
    W. S. Holbrook, T. M. Brocher, U. S. Brink, and J. A. Hole, “Crustal Structure of a Transform Plate Boundary: Bay and the Central California Continental Margin,” J. Geophys. Res. 101, 22311–22334 (1996).CrossRefGoogle Scholar
  28. 28.
    J. A. Hole, T. M. Brocher, S. L. Klemperer, et al., “Three-Dimensional Seismic Velocity Structure of the Bay Area,” J. Geophys. Res. 105, 13 857–13 874 (2000).CrossRefGoogle Scholar
  29. 29.
    S. Honda, “Thermal Structure beneath Tohoku, Northeast Japan—A Case Study for Understanding the Detailed Thermal Structure of the Subduction Zone,” Tectonophysics 112, 69–102 (1985).CrossRefGoogle Scholar
  30. 30.
    C. A. Hopson, J. M. Mattison, and Jr. E. A. Pessagno, Coast Range Ophiolite, Western California: Englewood Cliffs (USGS Open File Rep. 88-45-O, 1981).Google Scholar
  31. 31.
    A. Hsui and N. Toksoz, “The Evolution of the Thermal Structures beneath a Subduction Zone,” Tectonophysics 60, 43–60 (1979).CrossRefGoogle Scholar
  32. 32.
    R. V. Ingersol, “Evolution of the Late Cretaceous Forearc Basin Northern and Central California,” Geol. Soc. Am. Bull. 90, 813–826 (1979).CrossRefGoogle Scholar
  33. 33.
    R. C. Jachens, A. Griscom, and C. W. Roberts, “Regional Extent of the Great Valley Basement West of the Great Valley. California: Implications for Extensive Tectonic Wedging in the California Coastal Ranges,” J. Geophys. Res. 100, 12 769–12 790 (1995).CrossRefGoogle Scholar
  34. 34.
    S. H. Kirby and A. K. Kronenberg, “Rheology of the Lithosphere: Selected Topics,” Rev. Geophys. Space Phys. 25, 1219–1244 (1987a).Google Scholar
  35. 35.
    S. H. Kirby and A. K. Kronenberg, “Correction to Rheology of the Lithosphere: Selected Topics,” Rev. Geophys. Space Phys. 25, 1680–1681 (1987b).Google Scholar
  36. 36.
    A. H. Lachenbruch and J. H. Sass, “Heat Flow and Energetics of the San Andreas Fault Zone,” J. Geophys. Res. 85, 6185–6223 (1980).Google Scholar
  37. 37.
    M. G. Langseth, J. X. Le Pichon, and M. Ewing, “Crustal Structure of the Mid-Ocean Ridges. 5. Heat Flow through the Atlantic Ocean Flow and Convection Currents,” J. Geophys. Res. 71, 5321–5355 (1966).Google Scholar
  38. 38.
    M. S. Lico and Y. K. Kharaka, “Subsurface Pressure and Temperature Distribution in Sacramento Basin, California,” in Selected Papers of the Pacific Section 1983 Annual Meeting, Sacramento, California, Ed. by R. Hester and D. E. Hellinger (Pacific section, AAPG, 1, 1983) pp. 57–75.Google Scholar
  39. 39.
    J. McCarthy, P. E. Hart, R. Anima, et al., “Seismic Evidence for Faulting in the Western Sacramento Delta Region, Pittsburg, California,” Eos Trans. AGU 75 (1994).Google Scholar
  40. 40.
    D. P. McKenzie, “Some Remarks on Heat Flow and Gravity Anomalies,” J. Geophys. Res. 72, 6261–6273 (1967).Google Scholar
  41. 41.
    D. P. McKenzie, “Speculations on the Consequences and Causes of Plate Motions,” Geophys. J. R. Astron. Soc. 8, 1–32 (1969).Google Scholar
  42. 42.
    D. P. McKenzie, “Temperature and Potential Temperature beneath Island Arcs,” Tectonophysics 10, 357–366 (1970).CrossRefGoogle Scholar
  43. 43.
    V. O. Mikhailov and E. P. Timoshkina, “Analysis of Data on the Nansen Cordillera, Assuming a Thermal Model of an Oceanic Lithosphere,” Proc. (Doklady) Russ. Acad. Sci. 331, 497–499 (1993).Google Scholar
  44. 44.
    W. D. Mooney and C. S. Weaver, “Regional Crustal Structure and Tectonics of the Pacific Coastal States; California, Oregon, and Washington,” in Geophysical Framework of the Continental United States, Ed. by L. A. Pakiser, and W. D. Mooney (Geol. Soc. Am. Mem., 172, Washington, DC, 1989), 129–162.Google Scholar
  45. 45.
    I. W. Moxon, Stratigraphic and Structural Architecture of the San-Joaquin, Sacramento Basins, PhD Thesis, Stanford University, California, 1990.Google Scholar
  46. 46.
    I. W. Moxon and S. A. Graham, “History and Controls of Subsidence in the Late Cretaceous-Tertiary Great Valley Forearc Basin, California,” Geology 15, 626–629 (1987).CrossRefGoogle Scholar
  47. 47.
    D. R. H. O’lConnell, J. R. Unruh, and L. V. Block, “Source Characterization and Ground-Motion Modelling of the 1892 Vacaville-Winters Earthquake Sequence, California,” Bull. Seismol. Soc. Am. 91, 1471–1497 (2001).CrossRefGoogle Scholar
  48. 48.
    D. H. Oppenheimer and N. Macgregor-Scott, “The Seismotectonics of the Eastern San Francisco Bay Region,” in Proc. 2nd Conf. on Earthquake Hazards in the Eastern San Francisco Bay Area, Ed. by Borchardt, Glenn, and others (California Department of Conservation, Division of Mines and Geology Special Publication, Vol. 113, 1992), pp. 11–16.Google Scholar
  49. 49.
    B. M. Page and D. C. Engebretson, “Correlation between the Geological Record and Computed Motion for Central California,” Tectonics 3, 133–155 (1984).Google Scholar
  50. 50.
    B. M. Page and T. M. Brocher, “Thrusting in the Central California Margin vver the Edge of the Pacific Plate during the Transform Regime,” Geology 21, 635–638 (1993).CrossRefGoogle Scholar
  51. 51.
    R. L. Parker and D. W. Oldenburg, “Thermal Model of Ocean Ridges,” Nat. Phys. Sci. 242, 137–139 (1973).Google Scholar
  52. 52.
    T. Parsons, A. M. Trehu, J. H. Luetgert, et al., “A New View into the Cascadia Subduction Zone and Volcanic Arc: Implications for Earthquake Hazards along the Margin,” Geology 26, 199–202 (1998).CrossRefGoogle Scholar
  53. 53.
    S. Peacock, “Thermal and Petrologic Structure of Subduction Zones,” in Subduction from Top to Bottom, Ed. by G. E. Bebout, D. W. Schroll, S. H. Kirby, J. P. Platt (AGU Geophys. Monogr. Vol. 96, 1996), pp. 119–133.Google Scholar
  54. 54.
    C. Prodehl, Crustal Structure of the Western United States (USGS Prof. Pap. 1034, 1979).Google Scholar
  55. 55.
    R. N. Pysklywec and M. C. L. Quintas, “A Mantle Flow Mechanism for the Late Paleozoic Subsidence of the Parana Basin,” J. Geophys. Res. 105, 16359–16370 (2000).CrossRefGoogle Scholar
  56. 56.
    G. Ranalli, “Rheology of the Lithosphere in Space and Time,” in Orogeny through Time (Geol. Soc. Spec. Public. 121), Ed. by J.-P. Burg and M. Ford (1997), pp. 19–37.Google Scholar
  57. 57.
    J. H. Sass, A. H. Lachenbruch, R. J. Munroe, et al., “Heat Flow in the Western United States,” J. Geophys. Res. 76, 6378–6413 (1971).Google Scholar
  58. 58.
    J. H. Sass, S. P. Galanis, Jr., and R. J. Munroe, easurement of Heat Flow by a Downhole Probe Technique in the San Joaquin Valley, California (USGS Open-File Rep. 76-56, 1982).Google Scholar
  59. 59.
    J. H. Sass, C. F. Williams, A. H. Lachenbruch, et al., “Thermal Regime of the San Andreas Fault Near Park-field, California,” J. Geophys. Res. 102, 27 575–27 585 (1997).CrossRefGoogle Scholar
  60. 60.
    D. W. Scholl, R. von Huene, T. L. Vallier, and D. G. Howell, “Sedimentary Masses and Concepts about Tectonic Processes at Underthrust Oceanic Margins,” Geology 8, 564–568 (1980).CrossRefGoogle Scholar
  61. 61.
    J. Severinghaus and T. Atwater, “Cenozoic Geometry and Thermal State of the Subducting Slabs beneath Western North America. Basin and Range Extension,” Geol. Soc. Am. Mem. 176, 1–22 (1990).Google Scholar
  62. 62.
    J. E. Spencer, “A Numerical Assessment of Slab Strength during High-and Low-Angle Subduction and Implications for Laramide Orogeny,” J. Geophys. Res. 99, 9227–9236 (1994).CrossRefGoogle Scholar
  63. 63.
    B. Stam, F. M. Gradstein, P. Lloyd, and D. Gillis, “Algorithms for Porosity and Subsidence History,” Comput. Geosci. 13, 317–349 (1987).CrossRefGoogle Scholar
  64. 64.
    C. Stein and S. Stein, “A Model for the Global Variation in Oceanic Depth and Heat Flow with Lithospheric Age,” Nature 359, 123–129 (1992).CrossRefGoogle Scholar
  65. 65.
    J. M. Stock and P. Molnar, “Uncertainties and Implications of the Late Cretaceous and Tertiary Position of North America Relative to the Farallon, Kula, and Pacific Plates,” Tectonics 7, 1339–1384 (1988).CrossRefGoogle Scholar
  66. 66.
    Y. S. Tuloukian, W. R. Judd, and R. F. Roy, Physical Properties of Rocks and Minerals, CINDAS Data Series on Material Properties, II-2 (1989).Google Scholar
  67. 67.
    D. L. Turcotte and G. Schubert, Geodynamics: Application of Continuum Physics to Geological Problems (Wiley, 1982).Google Scholar
  68. 68.
    M. B. Underwood, “Temporal Changes in Geothermal Gradient, Franciscan Subduction Complex, Northern California,” J. Geophys. Res. 94, 3111–3125 (1989).CrossRefGoogle Scholar
  69. 69.
    J. R. Unruh and W. R. Lettis, “Kinematics of Transpressional Deformation in the Eastern Bay Region, California,” Geology 26, 19–22 (1998).CrossRefGoogle Scholar
  70. 70.
    J. van der Beukel and R. Wortel, “Thermo-Mechanical Modelling of Arc-Trench Regions,” Tectonophysics 154, 177–193 (1988).CrossRefGoogle Scholar
  71. 71.
    J. Wang and R. J. Munroe, Heat Flow and Sub-Surface Temperatures in the Great Valley, California (USGS Open-File Rep. 82-844, 1982).Google Scholar
  72. 72.
    J. Weber-Band, P. L. Williams, D. L. Jones, et al., Active Tectonic Deformation at the Eastern Margin of the California Coast Ranges: Results of the BASIX and CALCRUST Programs (USGS Open-File Rep. 97-691, 1997).Google Scholar
  73. 73.
    C. M. Wentworth, M. D. Zoback, A. Griscom, et al., “A Transect across the Mesozoic Accretionary Margin of the Central California,” Geophys. J. Int. 85, 105–110 (1987).Google Scholar
  74. 74.
    C. M. Wentworth and M. D. Zoback, “The Style of the Late Cenozoic Deformation at the Eastern Front of the California Coastal Ranges,” Tectonics 8, 237–246 (1989).Google Scholar
  75. 75.
    C. M. Wentworth, G. R. Fisher, P. Levine, and R. C. Jachens, The Surface of the Crystalline Basement, Great Valley, Sierra Nevada, California: A Digital Map Database (USGS Open File Rep. 95-96, 1995).Google Scholar
  76. 76.
    C. F. Williams and S. P. Galanis, Jr., Heat-Flow Measurements in the Vicinity of the Hayward Fault, California (USGS Open-File Rep. 94-692, 1994).Google Scholar
  77. 77.
    T. Williams, Basin-Fill Architecture and Forearc Tectonics, Cretaceous Great Valley Group, Sacramento Basin, Northern California, Ph.D. Thesis, Stanford University. California, 1997.Google Scholar
  78. 78.
    I. G. Wong, “Earthquake Activity in the Sacramento Valley, California and Its Implications To Active Geological Structures and Contemporary Tectonic Stress,” in Structural Geology of Sacramento Basin (Annual Meeting of Pacific Section, Am. Assoc. Pet. Geol., Sacramento, California, 1987), Ed. by V. B. Cherven and W. F. Edmondson, pp. 5–14.Google Scholar
  79. 79.
    I. G. Wong, R. W. Ely, and A. C. Kollman, “Contemporary Seismicity and Tectonics of the Northern and Central Coast Ranges-Sierran Block Boundary Zone, California,” J. Geophys. Res. 93, 7813–7833 (1988).Google Scholar
  80. 80.
    D. L. Zieglar and J. H. Spotts, “Reservoir and Source-Bed History of Great Valley, California,” Am. Assoc. Pet. Geol. Bull. 62, 813–826 (1978).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. O. Mikhailov
    • 1
  • T. Parsons
    • 2
  • R. W. Simpson
    • 2
  • E. P. Timoshkina
    • 1
  • C. Williams
    • 2
  1. 1.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  2. 2.US Geological SurveyMenlo ParkUSA

Personalised recommendations