Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 726–738 | Cite as

Methods for Molecular Evolution of Polymerases

  • S. A. Zhukov
  • A. A. Fokina
  • D. A. Stetsenko
  • S. V. VasilyevaEmail author


In 2018, three scientists shared the Nobel Prize in Chemistry: Frances H. Arnold, “for the directed evolution of enzymes”; George P. Smith and Sir Gregory P. Winter, “for the phage display of peptides and antibodies”. All authors are associated with the development of methods for obtaining the useful proteins and peptides, which are based on imitation of the natural “method” of biological evolution, namely, on a combination of random variability and nonrandom selection. In this review, we consider modern methods for designing engineering polymerases, which determine the progress in the enzymatic synthesis and evolution of unnatural nucleic acids. The development of these methods provides an opportunity to obtain and study a huge set of new biopolymers inaccessible to nature, as well as various ligands, catalysts, and materials based thereon.


directed evolution of polymerases compartmentalized self-replication phage display rational design screening new enzymes 



This work was financially supported by the Program of Basic Scientific Research of the State Academies of Sciences for 2017–2020 (basic project no. AAAA-A17-117020210024-8 “Therapeutic Nucleic Acids”).


This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflict of interest.


  1. 1.
    Pinheiro, V.B., Taylor, A.I., Cozens, C., Abramov, M., Renders, M., Zhang, S., Chaput, J.C., Wengel, J., Peak-Chew, S.Y., McLaughlin, S.H., Herdewijn, P., and Holliger, P., Science, 2012, vol. 336, pp. 341–344.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Houlihan, G., Arangundy-Franklin, S., and Holliger, P., Curr. Opin. Biotechnol., 2017, vol. 48, pp. 168–179.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Taylor, A.I. and Holliger, P., Curr. Protoc. Chem. Biol., 2018, vol. 10, p. 44.CrossRefGoogle Scholar
  4. 4.
    Taylor, A.I., Pinheiro, V.B., Smola, M.J., Morgunov, A.S., Peak-Chew, S., Cozens, C., Weeks, K.M., Herdewijn, P., and Holliger, P., Nature, 2015, vol. 518, pp. 427–430.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Taylor, A.I., Beuron, F., Peak-Chew, S.Y., Morris, E.P., Herdewijn, P., and Holliger, P., Chembiochem, 2016, vol. 17, pp. 1107–1110.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Pinheiro, V.B. and Holliger, P., Curr. Opin. Chem. Biol., 2012, vol. 16, pp. 245–252.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Brannigan, J.A. and Wilkinson, A.J., Nat. Rev. Mol. Cell. Biol., 2002, vol. 3, pp. 964–970.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ghadessy, F.J., Ong, J.L., and Holliger, P., Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 4552–4557.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Tawfik, D.S. and Griffiths, A.D., Nat. Biotechnol., 1998, vol. 16, pp. 652–656.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    d’Abbadie, M., Hofreiter, M., Vaisman, A., Loakes, D., Gasparutto, D., Cadet, J., Woodgate, R., Paabo, S., and Holliger, P., Nat. Biotechnol., 2007, vol. 25, pp. 939–943.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ghadessy, F.J., Ramsay, N., Boudsocq, F., Loakes, D., Brown, A., Iwai, S., Vaisman, A., Woodgate, R., and Holliger, P., Nat. Biotechnol., 2004, vol. 22, pp. 755–759.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Loakes, D., Gallego, J., Pinheiro, V.B., Kool, E.T., and Holliger, P., J. Am. Chem. Soc., 2009, vol. 131, pp. 14 827–14 837.CrossRefGoogle Scholar
  13. 13.
    Hansen, C.J., Wu, L., Fox, J.D., Arezi, B., and Hogrefe, H.H., Nucleic Acids Res., 2011, vol. 39, pp. 1801–1810.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Laos, R., Shaw, R., Leal, N.A., Gaucher, E., and Benner, S., Biochemistry, 2013, vol. 52, pp. 5288–5294.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ellefson, J.W., Gollihar, J., Shroff, R., Shivram, H., Iyer, V.R., and Ellington, A.D., Science, 2016, vol. 352, pp. 1590–1593.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Povilaitis, T., Alzbutas, G., Sukackaite, R., Siurkus, J., and Skirgaila, R., Protein Eng. Des. Sel., 2016, vol. 29, pp. 617–628.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Houlihan, G., Arangundy-Franklin, S., and Holliger, P., Acc. Chem. Res., 2017, vol. 50, pp. 1079–1087.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ong, J.L., Loakes, D., Jaroslawski, S., Too, K., and Holliger, P., J. Mol. Biol., 2006, vol. 361, pp. 537–550.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ramsay, N., Jemth, A.S., Brown, A., Crampton, N., Dear, P., and Holliger, P., J. Am. Chem. Soc., 2010, vol. 132, pp. 5096–5104.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wochner, A., Attwater, J., Coulson, A., and Holliger, P., Science, 2011, vol. 332, pp. 209–212.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Johnston, W.K., Unrau, P.J., Lawrence, M.S., Glasner, M.E., and Bartel, D.P., Science, 2001, vol. 292, pp 1319–1325.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Larsen, A.C., Dunn, M.R., Hatch, A., Sau, S.P., Youngbull, C., and Chaput, J.C., Nat. Commun., 2016, vol. 7, p. 11 235.CrossRefGoogle Scholar
  23. 23.
    Jestin, J.L., Kristensen, P., and Winter, G., Angew. Chem., Int. Ed. Engl., 1999, vol. 38, pp. 1124–1127.CrossRefGoogle Scholar
  24. 24.
    Xia, G., Chen, L., Sera, T., Fa, M., Schultz, P.G., and Romesberg, F.E., Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 6597–6602.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fa, M., Radeghieri, A., Henry, A.A., and Romesberg, F.E., J. Am. Chem. Soc., 2004, vol. 126, pp. 1748–1754.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Leconte, A.M., Chen, L., and Romesberg, F.E., J. Am. Chem. Soc., 2005, vol. 127, pp. 12 470–12 471.CrossRefGoogle Scholar
  27. 27.
    Vichier-Guerre, S., Ferris, S., Auberger, N., Mahiddine, K., and Jestin, J.L., Angew. Chem., Int. Ed. Engl., 2006, vol. 45, pp. 6133–6137.CrossRefGoogle Scholar
  28. 28.
    Chen, T., Hongdilokkul, N., Liu, Z., Adhikary, R., Tsuen, S.S., and Romesberg, F.E., Nat. Chem., 2016, vol. 8, pp. 556–562.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chelliserrykattil, J., Cai, G., and Ellington, A.D., BMC Biotechnol., 2001, vol. 1, p. 13.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Dubendorff, J.W. and Studier, F.W., J. Mol. Biol., 1991, vol. 219, pp. 61–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Chelliserrykattil, J. and Ellington, A.D., Nat. Biotechnol., 2004, vol. 22, pp. 1155–1160.PubMedCrossRefGoogle Scholar
  32. 32.
    Brakmann, S. and Grzeszik, S., Chembiochem, 2001, vol. 2, pp. 212–219.PubMedCrossRefGoogle Scholar
  33. 33.
    Sote, S., Kleine, S., Schlicke, M., and Brakmann, S., Chembiochem, 2011, vol. 12, pp. 1551–1558.PubMedCrossRefGoogle Scholar
  34. 34.
    Esvelt, K.M., Carlson, J.C., and Liu, D.R., Nature, 2011, vol. 472, pp. 499–503.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Summerer, D., Rudinger, N.Z., Detmer, I., and Marx, A., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, pp. 4712–4715.CrossRefGoogle Scholar
  36. 36.
    Gloeckner, C., Sauter, K.B., and Marx, A., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, pp. 3115–3117.CrossRefGoogle Scholar
  37. 37.
    Sauter, K.B. and Marx, A., Angew. Chem., Int. Ed. Engl., 2006, vol. 45, pp. 7633–7635.CrossRefGoogle Scholar
  38. 38.
    Siegmund, V., Santner, T., Micura, R., and Marx, A., Chem. Commun., 2012, vol. 48, pp. 9870–9872.CrossRefGoogle Scholar
  39. 39.
    Staiger, N. and Marx, A., Chembiochem, 2010, vol. 11, pp. 1963–1966.PubMedCrossRefGoogle Scholar
  40. 40.
    Laos, R., Thomson, J.M., and Benner, S.A., Front. Microbiol., 2014, vol. 5, p. 565.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tabor, S. and Richardson, C.C., Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, pp. 6339–6343.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Li, Y., Mitaxov, V., and Waksman, G., Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, pp. 9491–9496.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Brown, J.A. and Suo, Z., Biochemistry, 2011, vol. 50, pp. 1135–1142.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Patel, P.H. and Loeb, L.A., J. Biol. Chem., 2000, vol. 275, pp. 40 266–40 272.CrossRefGoogle Scholar
  45. 45.
    Schultz, H.J., Gochi, A.M., Chia, H.E., Ogonowsky, A.L., Chiang, S., Filipovic, N., Weiden, A.G., Hadley, E.E., Gabriel, S.E., and Leconte, A.M., Biochemistry, 2015, vol. 54, pp. 5999–6008.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Gardner, A.F., Jackson, K.M., Boyle, M.M., Buss, J.A., Potapov, V., Gehring, A.M., Zatopek, K.M., Correa, I.R., Jr., Ong, J.L., and Jack, W.E., Front. Mol. Biosci., 2019, vol. 6, p. 28.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cozens, C., Pinheiro, V.B., Vaisman, A., Woodgate, R., and Holliger, P., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 8067–8072.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cozens, C., Mutschler, H., Nelson, G.M., Houlihan, G., Taylor, A.I., and Holliger, P., Angew. Chem., Int. Ed. Engl., 2015, vol. 54, pp. 15 570–15 573.CrossRefGoogle Scholar
  49. 49.
    Sousa, R. and Padilla, R., EMBO J., 1995, vol. 14, pp. 4609–4621.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Padilla, R. and Sousa, R., Nucleic Acids Res., 2002, vol. 30, p. e138.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Arangundy-Franklin, S., Taylor, A.I., Porebski, B.T., Genna, V., Peak-Chew, S., Vaisman, A., Woodgate, R., Orozco, M., and Holliger, P., Nat. Chem., 2019, vol. 11, pp. 533–542.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wang, Z., Xu, W., Liu, L., and Zhu, T.F., Nat. Chem, 2016, vol. 8, pp. 698–704.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Pech, A., Achenbach, J., Jahnz, M., Schulzchen, S., Jarosch, F., Bordusa, F., and Klussmann, S., Nucleic Acids Res., 2017, vol. 45, pp. 3997–4005.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. A. Zhukov
    • 1
  • A. A. Fokina
    • 1
  • D. A. Stetsenko
    • 1
  • S. V. Vasilyeva
    • 1
    • 2
    Email author
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations