Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 677–683 | Cite as

Bridged Oligonucleotides with Smoothed Hybridization Properties as a Tool for Analysis of Nucleotide Sequences

  • I. A. PyshnayaEmail author
  • A. A. Lomzov
  • D. V. Pyshnyi


Bridged oligonucleotides that contain nonnucleotide inserts, i.e., diethylene glycol phosphate residues (DEG insert) have been studied. These oligonucleotide derivatives were shown to smooth the melting temperatures of their DNA duplexes of various nucleotide composition. The DEG insert has been shown to have almost no effect on the sequence specificity of modified oligonucleotides and regulate only their hybridization properties. It has been demonstrated that bridged oligonucleotides immobilized on microparticles can be successfully used to specifically and efficiently reveal DNA templates during the parallel solid-phase hybridization analysis. The use of bridged oligonucleotides along with DNA-dependent enzymes (Taq DNA polymerase and T4 DNA ligase) in this analysis has led to pronounced discrimination of wrong DNA molecules due to the covalent attachment of the label to the carrier, thus increasing the reliability of the hybridization analysis.


modified oligonucleotides bridged oligonucleotides nonnucleotide modifications smoothing hybridization properties enzymatic labeling melting temperature 



The authors would like to thank V.V. Koval (Center of the Collective Use, ICBFM, SB RAS) for recording mass spectra of bridged oligonucleotides.


The design of bridged oligonucleotides was supported by the State project no. А-0309-2016-0004. The study of modified oligonucleotides in the presence of DNA-dependent enzymes was supported by the grant no. 18-14-00357 from the Russian Scientific Foundation.


This article does not contain any studies with the use of humans and animals as objects of research.

Conflict of Interests

The authors state that there is no conflict of interests.


  1. 1.
    SantaLucia, J. and Hicks, D., Annu. Rev. Biophys. Biomol. Struct., 2004, vol. 33, pp. 415–440.CrossRefGoogle Scholar
  2. 2.
    Kabilov, M.R. and Pyshnyi, D.V., JBPC, 2011, vol. 2, art. ID 5134.Google Scholar
  3. 3.
    Matsuzaki, H., Loi, H., Dong, S., Tsai, Y.Y., Fang, J., Law, J., Di, X., Liu, W.M., Yang, G., Liu, G., Huang, J., Kennedy, G.C., Ryder, T.B., Marcus, G.A., Walsh, P.S., et al., Genome Res., 2004, vol. 14, pp. 414–425.CrossRefGoogle Scholar
  4. 4.
    Monia, B.P., Johnston, J.F., Eckers, D.J., Zounesn, M.A., Lima, W.F., and Freier, S.M., J. Biol. Chem., 1992, vol. 267, pp. 9954–19 962.Google Scholar
  5. 5.
    Nguyen, H.-K., Fournier, O., Asseline, U., Dupret, D., and Thuong, N.T., Nucleic Acids Res., 1999, vol. 27, pp. 1492–1498.CrossRefGoogle Scholar
  6. 6.
    Rees, W.A., Yager, T.D., Korte, J., and von Hippel, P.H., Biochemistry, 1993, vol. 32, pp. 137–144.CrossRefGoogle Scholar
  7. 7.
    Pyshnyĭ, D.V., Krivenko, A.A., Lokhov, S.G., Ivanova, E.M., Dymshits, G.M., and Zarytova, V.F., Russ. J. Bioorg. Chem., 1998, vol. 24, pp. 32–37.Google Scholar
  8. 8.
    Lee, A.H.F. and Kool, E.T., J. Am. Chem. Soc., 2005, vol. 127, pp. 3332–3338.CrossRefGoogle Scholar
  9. 9.
    Nguyen, H.-K., Bonfils, E., Auffray, P., Costaglioli, P., Schmitt, P., Asseline, U., Durand, M., Maurizot, J.-C., Dupret, D., and Thuong, N.T., Nucleic Acids Res., 1998, vol. 26, pp. 4249–4258.CrossRefGoogle Scholar
  10. 10.
    Winkler, J., Future Med Chem., 2015, vol. 7, pp. 1721–1731.CrossRefGoogle Scholar
  11. 11.
    Antsypovich, S.I., Oretskaya, T.S., Volkov, E.M., Romanova, E.A., Tashlitsky, V.N., Blumenfeld, M., and Shabarova, Z.A., Nucleosides Nucleotides, 1996, vol. 15, pp. 923–936.CrossRefGoogle Scholar
  12. 12.
    Berger, M., Wu, Y., Ogawa, A.K., McMinn, D.L., Schultz, P.G., and Romesberg, F.E., Nucleic Acids Res., 2000, vol. 28, pp. 2911–2914.CrossRefGoogle Scholar
  13. 13.
    Ahlborn, C., Siegmund, K., and Richert, C., J. Am. Chem. Soc., 2007, vol. 12949, pp. 15 218–15 232.CrossRefGoogle Scholar
  14. 14.
    Khomyakova, E.A., Zubin, E.M., Pavlova, L.V., Kazanova, E.V., Smirnov, I.P., Pozmogova, G.E., Muller, S., Dolinnaya, N.G., Kubareva, E.A., Hartmann, R.K., and Oretskaya, T.S., Russ. J. Bioorg. Chem., 2012, vol. 38, pp. 488–499.CrossRefGoogle Scholar
  15. 15.
    Mitsuoka, Y., Kodama, T., Ohnishi, R., Hari, Y., Imanishi, T., and Obika, S., Nucleic Acids Res., 2009, vol. 37, pp. 1225–1238.CrossRefGoogle Scholar
  16. 16.
    Fedotova, E.A., Yan, F., Kubareva, E.A., Romanova, E.A., Protsenko, A.S., Viryasov, M.B., Gianik, T., and Oretskaya, T.S., 2008, vol. 34, pp. 236–244.Google Scholar
  17. 17.
    Kupryushkin, M.S., Pyshnyi, D.V., and Stetsenko, D.A., Acta Naturae, 2014, vol. 6, pp. 116–118.CrossRefGoogle Scholar
  18. 18.
    Walter, T.J. and Richert, C., Nucleic Acids Res., 2018, vol. 46, pp. 8069–8078.CrossRefGoogle Scholar
  19. 19.
    Summerton, J., Stein, D., Huang, S.B., Matthews, P., Weller, D., and Partridge, M., Antisense Nucleic Acid Drug Dev., 1997, vol. 7, pp. 63–70.CrossRefGoogle Scholar
  20. 20.
    Pyshnaya, I.A., Vinogradova, O.A., Kabilov, M.R., Ivanova, E.M., and Pyshnyi, D.V., Biokhimiya, 2009, vol. 74, pp. 1238–1251.Google Scholar
  21. 21.
    Gao, H., Chidambaram, N., Chen, B.C., Pelham, D.E., Patel, R., Yang, M., Zhou, L., Cook, A., and Cohen, J.S., Biocojugate Chem., 1994, vol. 5, pp. 445–453.CrossRefGoogle Scholar
  22. 22.
    Rumney, S. and IV, KoolE.T., J. Am. Chem. Soc., 1995, vol. 117, pp. 5635–5646.CrossRefGoogle Scholar
  23. 23.
    Doktycz, M.J., Paner, T.M., and Benight, A.S., Biopolymers, 1993, vol. 33, pp. 1765–1777.CrossRefGoogle Scholar
  24. 24.
    Vo, T., Wang, S., and Kool, E.T., Nucleic Acids Res., 1995, vol. 23, pp. 2937–2944.CrossRefGoogle Scholar
  25. 25.
    Koroleva, O.N., Volkov, E.M., and Drutsa, V.L., Bioorg. Khim., 1994, vol. 20, pp. 420–432.PubMedGoogle Scholar
  26. 26.
    Lomzov, A.A., Pyshnaya, I.A., Ivanova, E.M., and Pyshnyi, D.V., Dokl. Biochem. Biophys., 2006, vol. 409, pp. 211–215.CrossRefGoogle Scholar
  27. 27.
    Degtyarev, S.Kh., Belavin, P.A., Shiskina, I.G., Zarytova, V.F., Gavryuchenkova, L.P., and Morozov, S.M., Bioorg. Khim., 1989, vol. 15, pp. 358–362.Google Scholar
  28. 28.
    Gallagher, S., Winston, S.E., Fuller, S.A., and Hurrell, J.G., Curr. Protoc. Cell Biol., 2011, vol. 52, pp. 6.2.1–6.2.28.Google Scholar
  29. 29.
    Durand, M., Chevrie, K., Chassignol, M., Thuong, N.T., and Maurizot, J.C., Nucleic Acids Res., 1990, vol. 18, pp. 6353–6359.CrossRefGoogle Scholar
  30. 30.
    Pyshnyi, D.V., Skobel’tsyna, L.M., Gushchina, E.N., Pyshnaya, I.A., Shishkina, I.G., Dymshits, G.M., Zarytova, V.F., and Ivanova, E.M, Mol. Biol., 2000, vol. 34, pp. 984–999.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. A. Pyshnaya
    • 1
    Email author
  • A. A. Lomzov
    • 1
  • D. V. Pyshnyi
    • 1
  1. 1.Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations