Relative Efficiency of Recognition of 5-Methylcytosine and 5-Hydroxymethylcytosine by Methyl-Dependent DNA Endonuclease GlaI


Only a limited number of tools are available to study cytosine methylation in DNA. One of the representatives of the recently discovered methyl-dependent DNA endonucleases is an enzyme GlaI. It is of great interest for determining the methylation status of eukaryotic genomic DNA due to its ability to cleave only methylated DNA. However, the ability of the GlaI endonuclease to recognize oxidized derivatives of 5-methylcytosine (mC), in particular another epigenetic base, 5-hydroxymethylcytosine (hmC), has not yet been characterized. It is not possible to fully use the potential of GlaI in the analysis of methylation due to the notable occurrence of the latter in the DNA of mammals. In this study, the efficiency of cleavage of DNA substrates with various combinations of mC and hmC by methyl-dependent DNA-endonuclease GlaI was compared; the kinetic parameters of cleavage reactions for fully methylated and fully hydroxymethylated recognition site were determined. It was shown that in most cases GlaI recognized substrates containing mC better than substrates containing hmC in the same positions. The most effective hydrolysis of substrates containing modifications in the sequence 5'-GCGC-3'/3'-CGCG-5' required the presence of hmC not only in the central but also in the edge positions in both DNA chains as in the case of mC.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig 1.


  1. 1

    Wilson, G.G. and Murray, N.E., Ann. Rev. Genet., 1991, vol. 25, pp. 585–627.

  2. 2

    Roberts, R.J., Belfort, M., Bestor, T., Bhagwat, A.S., Bickle, T.A., Bitinaite, J., Blumenthal, R.M., Degtyarev, S.Kh., Dryden, D.T.F., Dybvig, K., Firman, K., Gromova, E.S., Gumport, R.I., Halford, S.E., Hattman, S., et al., Nucleic Acids Res., 2003, vol. 31, pp. 1805–1812.

  3. 3

    Cohen-Karni, D., Xu, D., Apone, L., Fomenkov, A., Sun, Z., Davis, P.J., Morey, KinneyS.R., Yamada-Mabuchi, M., Xu, S.-Y., Davis, T., Pradhan, S., Roberts, R.J., and Zheng, Y., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 11 040–11 045.

  4. 4

    Cantalupo, G., Bucci, C., Salvatore, P., Pagliarulo, C., Roberti, V., Lavitola, A., Bruni, C.B., and Alifano, P., FEBS Lett., 2001, vol. 495, pp. 178–183.

  5. 5

    Chernukhin, V.A., Nayakshina, T.N., Abdurashitov, M.A., Tomilova, Yu.E., Mezentseva, N.V., Dedkov, V.S., Mikhnenkova, N.A., Gonchar, D.A., and Degtyarev, S.Kh., Biotekhnologiya, 2006, no. 4, pp. 31–35.

  6. 6

    Tarasova, G.V., Nayakshina, T.N., and Degtyarev, S.Kh., BMC Mol. Biol., 2008, vol. 9, p. 7.

  7. 7

    Abdurashitov, M.A., Chernukhin, V.A., Gonchar, D.A., and Degtyarev, S.Kh., BMC Genomics, 2009, vol. 10, p. 322.

  8. 8

    Kravets, A.P., Myusse, T.A., Litvinchuk, A.V., Ostermiller, Sh., Vengzhen, G.S., and Grodzinskii, D.M., Tsitol. Genet., 2010, vol. 44, pp 18–22.

  9. 9

    Wood, R.J., McKelvie, J.C., Maynard-Smith, M.D., and Roach, P.L., Nucleic Acids Res., 2010, vol. 38. e107.

  10. 10

    Syeda, F., Fagan, R.L., Wean, M., Avvakumov, G.V., Walker, J.R., Xue, S., Dhe-Paganon, S., and Brenner, C., J. Biol. Chem., 2011, vol. 286, pp. 15 344–15 351.

  11. 11

    Fagan, R.L., Wu, M., Chedin, F., and Brenner, C., PLoS One, 2013, vol. 8. e78752.

  12. 12

    Rand, K.N., Young, G.P., Ho, T., and Molloy, P.L., Nucleic Acids Res., 2013, vol. 41. e15.

  13. 13

    Sun, Y., Sun, Y., Tian, W., Liu, C., Gao, K., and Li, Z., Chem. Sci., 2018, vol. 9, pp. 1344–1351.

  14. 14

    Zemach, A. and Zilberman, D., Curr. Biol., 2010, vol. 20, pp. R780–R785.

  15. 15

    Lee, T.-F., Zhai, J., and Meyers, B.C., Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 9027–9028.

  16. 16

    Ballestar, E. and Wolffe, A.P., Eur. J. Biochem., 2001, vol. 268, pp. 1–6.

  17. 17

    Baubec, T., Ivánek, R., Lienert, F., and Schübeler, D., Cell, 2013, vol. 153, pp. 480–492.

  18. 18

    Weber, M. and Schübeler, D., Curr. Opin. Cell Biol., 2007, vol. 19, pp. 273–280.

  19. 19

    Singer, M., Kosti, I., Pachter, L., and Mandel-Gutfreund, Y., Nucleic Acids Res., 2015, vol. 43, pp. 3498–3508.

  20. 20

    Branco, M.R., Ficz, G., and Reik, W., Nat. Rev. Genet., 2011, vol. 13, pp. 7–13.

  21. 21

    Pastor, W.A., Pape, U.J., Huang, Y., Henderson, H.R., Lister, R., Ko, M., McLoughlin, E.M., Brudno, Y., Mahapatra, S., Kapranov, P., Tahiliani, M., Daley, G.Q., Liu, X.S., Ecker, J.R., Milos, P.M., et al., Nature, 2011, vol. 473, pp. 394–397.

  22. 22

    Yu, M., Hon, G.C., Szulwach, K.E., Song, C.-X., Zhang, L., Kim, A., Li, X., Dai, Q., Shen, Y., Park, B., Min, J.-H., Jin, P., Ren, B., and He, C., Cell, 2012, vol. 149, pp. 1368–1380.

  23. 23

    Spruijt, C.G., Gnerlich, F., Smits, A.H., Pfaffeneder, T., Jansen, P.W.T.C., Bauer, C., Münzel, M., Wagner, M., Müller, M., Khan, F., Eberl, H.C., Mensinga, A., Brinkman, A.B., Lephikov, K., Muller, U., et al., Cell, 2013, vol. 152, pp. 1146–1159.

  24. 24

    Takai, H., Masuda, K., Sato, T., Sakaguchi, Y., Suzuki, T., Suzuki, T., Koyama-Nasu, R., Nasu-Nishimura, Y., Katou, Y., Ogawa, H., Morishita, Y., Kozuka-Hata, H., Oyama, M., Todo, T., Ino, Y., et al., Cell Rep., 2014, vol. 9, pp. 48–60.

  25. 25

    Renciuk, D., Blacque, O., Vorlickova, M., and Spingler, B., Nucleic Acids Res., 2013, vol. 41, pp. 9891–9900.

  26. 26

    Sambrook, J. and Russell, D.W., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2001.

Download references

Author information

Correspondence to D. O. Zharkov.

Ethics declarations

The work has no studies involving humans or animals as subjects of the study.

Conflict of Interest

The authors state that there is no conflict of interest.

Additional information

Translated by E. Puchkov

Abbreviations: hmC, 5-hydroxymethylcytosine; mC, 5-methylcytosine.

Corresponding author: phone: +7 (383) 363-51-87; fax +7 (383) 363-51-53; e-mail:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petrova, D., Naumenko, M., Khantakova, D. et al. Relative Efficiency of Recognition of 5-Methylcytosine and 5-Hydroxymethylcytosine by Methyl-Dependent DNA Endonuclease GlaI. Russ J Bioorg Chem 45, 625–629 (2019) doi:10.1134/S1068162019060323

Download citation


  • epigenetic methylation
  • 5-methylcytosine
  • 5-hydroxymethylcytosine
  • GlaI endonuclease