Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 803–812 | Cite as

2'OMe Modification of Anti-miRNA-21 Oligonucleotide–Peptide Conjugate Improves Its Hybridization Properties and Catalytic Activity

  • S. K. Miroshnichenko
  • B. Amirloo
  • E. V. Bichenkova
  • V. V. Vlassov
  • M. A. Zenkova
  • O. A. PatutinaEmail author


Nowadays, application of miRNases—artificial ribonucleases aimed at degradation of noncoding RNAs, in particular, miRNAs—represents one of the novel experimental approaches to inhibit tumorigenesis. miRNases integrate in their structure an addressing oligonucleotide, which provides specific binding with miRNA target, and a catalytic group, which promotes cleavage of the RNA substrate. Introduction of chemical modifications to the oligonucleotide domain of miRNases in the region that is complementary to miRNA may significantly increase the hybridization properties and nuclease resistance of this type of compound. However, the influence of such structural changes to the ribonuclease activity of miRNases remains unclear. In this work, to investigate the effect of 2'OMe modifications on the activity of miRNases, we synthesized two types of anti-miRNA-21 conjugates of the peptide [(ArgLeu)2Gly]2 and hairpin oligonucleotides in which 14-mer binding region to the miRNA target was fully or partially modified. It is shown that the introduction of 2'OMe modifications promotes a considerable increase in the affinity of miRNases to miRNA-21 but does not change significantly their nuclease resistance. Full modification of conjugates in the region that is complementary to miRNA negatively affects their ribonuclease activity, whereas partial introduction of 2'OMe nucleotides considerably enhances the cleavage activity of miRNases, which leads to a substantial decrease in the proliferation rate and migration potential of tumor cells, which are determined by the miRNA-21 expression.

Keywords: oligonucleotide–peptide conjugates, oncogenic miRNA, miRNA-21, 2'OMe modification, human epidermoid carcinoma KB-8-5.



We are grateful to M.I. Meshchaninov for the synthesis of oligonucleotides and miRNA-21 and A.V. Vladimirov for help in work with the tumor cell culture.


This study was supported by the Russian Science Foundation (project no. 19-14-00250) and the basic budgetary financing project no. AAAA-A17-117020210024-8.


Conflict of Interests

The authors declare that they have no conflict of interest.

Statement on the Welfare of Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Zamaratski, E., Pradeepkumar, P.I., and Chattopadhyaya, J., J. Biochem. Biophys. Methods, 2001, vol. 48, pp. 189–208.CrossRefGoogle Scholar
  2. 2.
    Patutina, O.A., Bichenkova, E.V., Miroshnichenko, S.K., Mironova, N.L., Trivoluzzi, L.T., Burusco, K.K., Bryce, R.A., Vlasov, V.V., and Zenkova, M.A., Biomaterials, 2017, vol. 122, pp. 163–178.CrossRefGoogle Scholar
  3. 3.
    Gaglione, M., Milano, G., Chambery, A., Moggio, L., Romanelli, A., and Messere, A., Mol. BioSyst., 2011, vol. 7, pp. 2490–2499.CrossRefGoogle Scholar
  4. 4.
    Danneberg, F., Ghidini, A., Dogandzhiyski, P., Kalden, E., Stromberg, R., and Gobel, M.V., Beilstein. J. Org. Chem., 2015, vol. 11, pp. 493–498.CrossRefGoogle Scholar
  5. 5.
    Patutina, O.A., Bazhenov, M.A., Miroshnichenko, S.K., Mironova, N.L., Pyshnyi, D.V., Vlassov, V.V., and Zenkova, M.A., Sci. Rep., 2018, vol. 8, p. 14 990.CrossRefGoogle Scholar
  6. 6.
    Mironova, N.L., Pyshnyi, D.V., Shtadler, D.V., Fedorova, A.A., Vlassov, V.V., and Zenkova, M.A., Nucleic Acids Res., 2007, vol. 35, pp. 2356–2367.CrossRefGoogle Scholar
  7. 7.
    Sunami, T., Kondo, J., Hirao, I., Watanabe, K., Miura, K.I., and Takenaka, A., Acta Crystallogr. D. Biol. Crystallogr., 2004, vol. 60, pp. 90–96.CrossRefGoogle Scholar
  8. 8.
    Patutina, O.A., Miroshnichenko, S.K., Mironova, N.L., Sen’kova, A.V., Bichenkova, E.V., Clarke, D.J., Vlassov, V.V., and Zenkova, M.A., Front. Pharmacol., 2019 (in press).Google Scholar
  9. 9.
    Malek-Adamian, E., Patrascu, M.B., Jana, S.K., Martinez-Montero, S., Moitessier, N., and Damha, M.J., Org. Chem., 2018, vol. 83, pp. 9839–9849.CrossRefGoogle Scholar
  10. 10.
    Lennox, K.A. and Behlke, M.A., Pharm. Res., 2010, vol. 27, pp. 1788–1799.CrossRefGoogle Scholar
  11. 11.
    Choung, S., Kim, Y.J., Kim, S., Park, H.O., and Choi, Y.C., Biochem. Biophys. Res. Commun., 2006, vol. 342, pp. 919–927.CrossRefGoogle Scholar
  12. 12.
    Meschaninova, M.I., Venyaminova, A.G., Zenkova, M.A., Vlassov, V.V., and Chernolovskaya, E.L., Oligonucleotides, 2010, vol. 20, pp. 297–308.CrossRefGoogle Scholar
  13. 13.
    Dowler, T., Bergeron, D., Tedeschi, A.L., Paquet, L., Ferrari, N., and Damha, M.J., Nucleic Acids Res., 2006, vol. 34, pp. 1669–1675.CrossRefGoogle Scholar
  14. 14.
    Laursen, M.B., Pakula, M.M., Gao, S., Fluiter, K., Mook, O.R., Baas, F., Langklaer, N., Wengel, S.L., Wengel, J., Kjems, J., and Bramsen, J.B., Mol. Biosyst., 2010, vol. 6, pp. 862–870.CrossRefGoogle Scholar
  15. 15.
    Miroshnichenko, S.K., Patutina, O.A., Burakova, E.A., Chelobanov, B.P., Fokina, A.A., Vlassov, V.V., Altman, S., Zenkova, M.A., and Stetsenko, D.A., Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, pp. 1229–1234.CrossRefGoogle Scholar
  16. 16.
    Rait, V.K. and Shaw, B.R., Antisense Nucleic Acid Drug. Dev., 1999, vol. 9, pp. 53–60.CrossRefGoogle Scholar
  17. 17.
    Damha, M.J. and Ogilvie, K.K., Methods Mol. Biol., 1993, vol. 20, pp. 81–114.PubMedGoogle Scholar
  18. 18.
    Williams, A., Staroseletz, Y., Zenkova, M.A., Jeannin, L., Aojula, H., and Bichenkova, E.V., Bioconjugate Chem., 2015, vol. 26, pp. 1129–1143.CrossRefGoogle Scholar
  19. 19.
    Silberklang, F., Gillum, A.M., and Rajbhandary, U.L., Methods Enzymol., 1979, vol. 59, pp. 58–109.CrossRefGoogle Scholar
  20. 20.
    Donis-Keller, H., Maxam, A.M., and Gilbert, W., Nucleic Acids Res., 1977, vol. 4, pp. 2527–2538.CrossRefGoogle Scholar
  21. 21.
    Vlassov, A.V., Vlassov, V.V., and Giege, R., Dokl. Akad. Nauk, 1996, vol. 349, pp. 411–413.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. K. Miroshnichenko
    • 1
  • B. Amirloo
    • 2
  • E. V. Bichenkova
    • 2
  • V. V. Vlassov
    • 1
  • M. A. Zenkova
    • 1
  • O. A. Patutina
    • 1
    Email author
  1. 1.Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.School of Health Sciences, Faculty of Biology, Medicine, and Health, University of ManchesterManchesterGreat Britain

Personalised recommendations