Increase in Sensitivity of HEK293FT Cells to Influenza Infection by CRISPR-Cas9-Mediated Knockout of IRF7 Transcription Factor


Interferon-regulated factors play a central role in the activation of the innate immune response. The interferon-regulatory factor 7 (IRF7) is one of the factors that are quickly activated and are involved in a cellular response to a viral infection. In this work, monoclonal lines, based on HEK293FT cells defective in the IRF7 gene, were obtained using a CRISPR-Cas9 genome-editing method. These lines differed in the viability, proliferation rate, and susceptibility to infection with influenza A virus. Transcriptomic analysis of the most susceptible cell clone revealed differential expression of IRF7 factor as well as the other interferon-regulated genes.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    World Health Organization, Newsletter, Flu, March 31, 2018. influenza-(seasonal).

  2. 2

    Seng, L-G., Daly, J., Chang, K-C., and Kuchipudi, S.V., PLoS One, 2014, vol. 9. e109023.

  3. 3

    Osada, N., Kohara, A., Yamaji, T., Hirayama, N., Kasai, F., Sekizuka, T., et al., DNA Res., 2014, vol. 21, pp. 673–683.

  4. 4

    Garcia-Sastre, A., Durbin, R.K., Zheng, H., Palese, P., Gertner, R., Levy, D.E., et al., J. Virol., 1998, vol. 72, pp. 8550–8558.

  5. 5

    Hamamoto, I., Takaku, H., Tashiro, M., and Yamamoto, N., PLoS One, 2013, vol. 8. e59892.

  6. 6

    Ning, S., Pagano, J.S., and Barber, G.N., Genes Immun., 2011, vol. 12, pp. 399–414.

  7. 7

    Genin, P., Algarte, M., Roof, P., Lin, R., and Hiscott, J., J. Immunol., 2000, vol. 164, pp. 5352–5361.

  8. 8

    Zhang, L. and Pagano, J.S., J. Interf. Cytokine Res., 2002, vol. 22, pp. 95–101.

  9. 9

    Sui, T., Song, Y., Liu, Z., Chen, M., Deng, J., Xu, Y., et al., Genome Biol., 2018, vol. 19, p. 164.

  10. 10

    Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F., Nat. Protoc., 2013, vol. 8, pp. 2281–2308.

  11. 11

    Hug, N., Longman, D., and Caceres, J.F., Nucleic Acids Res., 2016, vol. 44, no. 4, pp. 1483–1495.

  12. 12

    Stepanov, G., Zhuravlev, E., Shender, V., Nushtaeva, A., Balakhonova, E., Mozhaeva, E., et al., Genes (Basel), 2018, vol. 9, p. 531.

  13. 13

    Diamond, M.S. and Farzan, M., Nat. Rev. Immunol., 2013, vol. 13, pp. 46–57.

  14. 14

    Infusini, G., Smith, J., Yuan, H., Pizzolla, A., Ng, W., et al., PLoS One, 2015, vol. 10, no. 11. e0143539.

  15. 15

    Liu, Y., Zhang, Y., Liu, T., and Gui, J., PLoS One, 2013, vol. 8. e66859.

  16. 16

    Heaton, N.S. and Randall, G., Trends Microbiol., 2011, vol. 19, pp. 368–375.

  17. 17

    Bajamaya, S., Frankl, T., Hayashi, T., and Takimoto, T., Virology, 2017, vol. 510, pp. 234–241.

  18. 18

    Lu, H. and Talbot, S., BioRxiv, 2019.

  19. 19

    Pizzorno, A., Terrier, O., Nicolas de Lamballerie, C., Julien, T., Padey, B., et al., Front. Immunol., 2019.

  20. 20

    Robertson, K.A. and Ghazal, P., Front. Immunol., 2016, vol. 7, p. 634.

  21. 21

    Cao, Y., Zhang, K., Liu, L., Li, W., Zhu, B., Zhang, S., et al., Hereditas, 2019, vol. 156 P, p. 10.

  22. 22

    Brinkman, E.K., Kousholt, A.N., Harmsen, T., Leemans, C., Chen, T., Jonkers, J., et al., Nucleic Acids Res., 2018, vol. 46, p. 58.

  23. 23

    Reed, L.J. and Muench, H., Am. J. Hygiene, 1938, vol. 27, pp. 493–497.

  24. 24

    Kim, D., Langmead, B., and Salzberg, S.L., Nat. Methods, 2015, vol. 12, pp. 357–360.

  25. 25

    Bolger, A.M., Lohse, M., and Usadel, B., Bioinformatics, 2014, vol. 30, pp. 2114–2120.

  26. 26

    Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., et al., Nat. Protoc., 2012, vol. 7, pp. 562–578.

  27. 27

    Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., et al., L, Nucleic Acids Res., 2016, vol. 44, pp. 90–97.

Download references


The research was performed using the equipment of the Interdisciplinary centre for shared use of Kazan Federal University (Kasan, Russia) and the Center for shared Use “Genomics” (Genomics Core Facility, ICBFM SB RAS, Novosibirsk, Russia).


This work was supported by the Russian Science Foundation (project no. 18-75-10069) and partially (in development of basic methods) by State Budget Project of ICBFM SB RAS АААА-А17-117020210023-1.

Author information

Correspondence to G. A. Stepanov.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Statement on the Welfare of Animals

This article does not contain any studies involving animals performed by any of the authors.

Statement of Compliance with Standards of Research involving Humans as Subjects

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

Abbreviations: IRF, interferon regulatory factors; NMD, nonsense-mediated mRNA decay; CRISPR, clustered regularly interspaced short palindromic repeats; Cas9, CRISPR associated protein 9; GFP, green fluorescent protein.

Corresponding author: phone: +7 (383) 363-51-89; e-mail:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Komissarov, A.B., Sergeeva, M.V., Mozhaeva, E.V. et al. Increase in Sensitivity of HEK293FT Cells to Influenza Infection by CRISPR-Cas9-Mediated Knockout of IRF7 Transcription Factor. Russ J Bioorg Chem 45, 749–757 (2019) doi:10.1134/S1068162019060232

Download citation


  • genome editing
  • IRF7
  • influenza A virus
  • CRISPR-Cas9