Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 739–748 | Cite as

Incorporation of Antisense Oligonucleotides into Lipophilic Concatemeric Complexes Provides Their Effective Penetration into Cells

  • O. N. Gusachenko
  • O. A. Patutina
  • V. A. Gvozdev
  • M. I. Meschaninova
  • A. G. Venyaminova
  • V. V. Vlassov
  • M. A. ZenkovaEmail author
Article
  • 6 Downloads

Abstract

The development of highly effective molecular and biological tools to facilitate the penetration of therapeutic nucleic acids into cells opens a direct way to their successful application as drugs. It has been shown that the incorporation of single-stranded antisense oligonucleotides into concatemeric complexes enhances their binding to the membrane structures of eukaryotic cells, and the use of a cholesterol residue attached to one of the oligonucleotide strands considerably improves the delivery of concatemeric complexes of oligonucleotides to their intracellular target. In the present work, the efficiency of the formation of concatemeric structures from oligonucleotides carrying lipophilic fragments such as lithocholic acid, oleylamide of lithocholic acid, and cholesterol, attached to the 5′-end of the oligonucleotide through oligomethylene linkers of different length has been studied. It has been found that all modified oligonucleotides are capable of effectively “assembling” into concatemeric complexes; however, effective delivery into cells was observed only in the case of concatemeric complexes formed by oligonucleotides carrying a cholesterol residue attached through an aminohexanol linker. It has been shown that antisense oligonucleotides delivered to cells as part of these cholesterol-containing concatemeric complexes effectively inhibit the expression of the target gene.

Keywords:

antisense oligonucleotide cell transfection concatemers cholesterol 

Notes

ACKNOWLEDGMENTS

The authors would like to thank A.V. Vladimirova for help in the work with a tumor cell culture and Cand. Sci. (Phys.–Math.) A.A. Lomzov for determining the melting temperatures of concatemeric complexes.

FUNDING

This work was supported by the Russian Science Foundation (project no. 19-74-30011) and a project of basic budget founding (project no. АААА-А17-117020210024-8).

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human and animal as objects of investigations.

Conflict of Interest

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Paterson, B.M., Roberts, B.E., and Kuff, E.L., Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, pp. 4370–4374.CrossRefGoogle Scholar
  2. 2.
    Zamecnik, P.C. and Stephenson, M.L., Proc. Natl. Acad. Sci. U. S. A., 1978, vol. 75, pp. 280–284.CrossRefGoogle Scholar
  3. 3.
    Bennett, C.F., Baker, B.F., Pham, N., Swayze, E., and Geary, R.S., Ann. Rev. Pharmacol. Toxicol., 2017, vol. 57, pp. 81–105.CrossRefGoogle Scholar
  4. 4.
    Dias, N. and Stein, C.A., Mol. Cancer Ther., 2002, vol. 1, pp. 347–355.CrossRefGoogle Scholar
  5. 5.
    Scoles, D.R., Minikel, E.V., and Pulst, S.M., Neurol. Genet., 2019, vol. 5, p. 323.CrossRefGoogle Scholar
  6. 6.
    Tiemann, K. and Rossi, J.J., EMBO Mol. Med., 2009, vol. 1, pp. 142–151.CrossRefGoogle Scholar
  7. 7.
    Yin, H., Kanasty, R.L., Eltoukhy, A.A., Vegas, A.J., Dorkin, J.R., and Anderson, D.G., Nat. Rev. Genet., 2014, vol. 15, pp. 541–555.CrossRefGoogle Scholar
  8. 8.
    Zhao, J. and Feng, S-S., Nanomedicine, 2015, vol. 10, pp. 2199–2228.CrossRefGoogle Scholar
  9. 9.
    Juliano, R.L., Nucleic Acids Res., 2016, vol. 44, pp. 6518–6548.CrossRefGoogle Scholar
  10. 10.
    Dassie, J.P. and Giangrande, P.H., Ther. Deliv., 2013, vol. 4, pp. 1527–1546.CrossRefGoogle Scholar
  11. 11.
    Crooke, S.T., Wang, S., Vickers, T.A., Shen, W., and Liang, X-H., Nat. Biotechnol., 2017, vol. 35, pp. 230–237.CrossRefGoogle Scholar
  12. 12.
    Lee, J.B., Hong, J., Bonner, D.K., Poon, Z., and Hammond, P.T., Nat. Mater., 2012, vol. 11, pp. 316–322.CrossRefGoogle Scholar
  13. 13.
    Letsinger, R.L., Zhang, G.R., Sun, D.K., Ikeuchi, T., and Sarin, P.S., Proc. Natl. Acad. Sci. U. S. A., 1989, vol. 86, pp. 6553–6556.CrossRefGoogle Scholar
  14. 14.
    Stein, C.A., Yakubov, L., Zhang, L.M., and Tonkinson, J., Nucleic Acids Symp. Ser., 1991, pp. 155–156.Google Scholar
  15. 15.
    Ryte, A.S., Karamyshev, V.N., Nechaeva, M.V., Guskova, Z.V., Ivanova, E.M., Zarytova, V.F., and Vlassov, V.V., FEBS Lett., 1992, vol. 299, pp. 124–126.CrossRefGoogle Scholar
  16. 16.
    Chaltin, P., Margineanu, A., Marchand, D., Van Aerschot, A., Rozenski, J., and De Schryver, F., Bioconjugate Chem., 2005, vol. 16, pp. 827–836.CrossRefGoogle Scholar
  17. 17.
    Gusachenko, O.N., Simonova, O.N., Pishnyi, D.V., Vlassov, V.V., and Zenkova, M.A., Hum. Gene Ther., 2008, vol. 19, pp. 532–546.CrossRefGoogle Scholar
  18. 18.
    Iglina, A.A., Meschaninova, M.I., and Venyaminova, A.G., Acids Symp. Ser., 2009, pp. 121–122.Google Scholar
  19. 19.
    Petrova, N.S., Chernikov, I.V., Meschaninova, M.I., Dovydenko, I.S., Venyaminova, A.G., Zenkova, M.A., Vlassov, V.V., and Chernolovskaya, E.L., Nucleic Acids Res., 2012, vol. 40, pp. 2330–2344.CrossRefGoogle Scholar
  20. 20.
    Sarkar, T., Conwell, C.C., Harvey, L.C., Santai, C.T., and Hud, N.V., Nucleic Acids Res., 2005, vol. 33, pp. 143–151.CrossRefGoogle Scholar
  21. 21.
    Simonova, O.N., Vladimirova, A.V., Zenkova, M.A., and Vlassov, V.V., Biochim. Biophys. Acta,Biomembr., 2006, vol. 1758, pp. 413–418.CrossRefGoogle Scholar
  22. 22.
    Rodea, M., Berga, T., and Gjoena, T., Comp. Biochem. Physiol., Part A: Physiol., 1997, vol. 117, pp. 531–537.CrossRefGoogle Scholar
  23. 23.
    Perbal, B., A Practical Guide to Molecular Cloning, 2nd ed., Wiley, 1988.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. N. Gusachenko
    • 1
  • O. A. Patutina
    • 1
  • V. A. Gvozdev
    • 1
  • M. I. Meschaninova
    • 1
  • A. G. Venyaminova
    • 1
  • V. V. Vlassov
    • 1
  • M. A. Zenkova
    • 1
    Email author
  1. 1.Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations