Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 522–527 | Cite as

Preliminary Structural Characteristic of Polysaccharides Extracted From the Callus Tissue of Sosnowskyi’s Hogweed (Heracleum Sosnowskyi Manden) Stem by Aqueous Ammonium Oxalate

  • E. N. Gordina
  • S. P. Kuznetsov
  • V. V. Golovchenko
  • A. A. ZlobinEmail author
Article
  • 3 Downloads

Abstract

Pectic polysaccharides have been isolated from callus tissue of the stem of Sosnowskyi’s hogweed (Heracleum sosnowskyi Manden) by extraction with a 0.7% aqueous solution of ammonium oxalate and characterized. It was shown that they differ from pectic polysaccharides of a native plant by a lower content of D‑galacturonic acid residues and a higher content of arabinose and galactose residues. The results obtained by a combination of ion exchange chromatography, enzymatic hydrolysis, periodate oxidation, methylation and NMR spectroscopy indicated the presence of low-methyl esterified 1,4-α-D-galacturonan, rhamogalacturonan-I, arabinan and galactan or arabinogalactan. The terminal 1,2- and 1,5-linked arabinofuranose residues, terminal, 1,3-, 1,6-linked and 3,6-substituted galactopyranose residues and 1,4-linked hexopyranose (galactopyranose or glucopyranose) residues were identified in the composition of neutral carbohydrate chains. The presence in the NMR spectra of trans-glycosyl correlation peaks of the methyl groups of 2,4-di-O-substituted rhamnose residues indirectly confirm the attachment arabinan, galactan or arabinogalactan carbohydrate chains to rhamnopyranose residues of the backbone at C-4 position.

Keywords:

callus tissue pectin polysaccharides galacturonan rhamogalacturonan I arabinogalactan methylation analysis mass spectrometry NMR spectroscopy 

Notes

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that there have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Shakhmatov, E.A., Mikhailova, E.A., and Makarova, E.N., Chem. Var.Raw Mater., 2015, no. 4, pp. 15–22.Google Scholar
  2. 2.
    Shakhmatov, E.G., Atukmaev, K.V., and Makarova, E.N., Carbohydr. Res., 2016, vol. 136, pp. 1358–1369.CrossRefGoogle Scholar
  3. 3.
    Ovodov, Yu.S., Russ. J. Bioorg. Chem., 2009, vol. 35, no. 3, pp. 293–310.CrossRefGoogle Scholar
  4. 4.
    Gunter, E.A., Popeiko, O.V., and Ovodov, Yu.S., Biochemistry, 2007, vol. 72, no. 9, pp. 1238–1247.Google Scholar
  5. 5.
    Geshi, N., Jorgensen, B., Scheller, H.V., and Ulvskov, P.I., Planta, 2000, vol. 210, pp. 622–629.CrossRefGoogle Scholar
  6. 6.
    Rubery, P.H. and Northcote, D.H., Biochim. Biophys. Acta, 1970, vol. 222, pp. 95–108.CrossRefGoogle Scholar
  7. 7.
    Shakhmatov, E.G., Toukach, P.V., Kuznetsov, S.P., and Makarova, E.N., Carbohydr. Res., 2014, vol. 102, pp. 521–528.CrossRefGoogle Scholar
  8. 8.
    Makarova, E.N., Shakhmatov, E.G., and Belyy, V.A., Carbohydr. Res., 2016, vol. 153, pp. 66–77.CrossRefGoogle Scholar
  9. 9.
    Gunter, E.A., Chem. Var.Raw Mater, 2001, no. 2, pp. 63–67.Google Scholar
  10. 10.
    Hakomori, S., J. Biochem., 1964, vol. 55, no. 2, pp. 205–208.PubMedGoogle Scholar
  11. 11.
    Goldstein, I.J., Hamilton, J.K., Montgomery, R., and Smith, F., J. Am. Chem. Soc., 1957, vol. 79, p. 6469.CrossRefGoogle Scholar
  12. 12.
    Ovodova, R.G., Shashkov, A.S., and Ovodov, Yu.S., Carbohydr. Res., 2002, vol. 49, pp. 337–344.CrossRefGoogle Scholar
  13. 13.
    Khramova, D.S., Golovchenko, V.V., Shashkov, A.S., Otgonbayar, D., Chimidsogzol, A., and Ovodov, Yu.S., Food Chem., 2011, vol. 126, pp. 870–877.CrossRefGoogle Scholar
  14. 14.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., J. Biol. Chem., 1951, vol. 193, pp. 265–275.PubMedGoogle Scholar
  15. 15.
    Usov, A.I., Bilan, M.I., and Klochkova, N.G., Bot. Mar., 1995, vol. 38, pp. 43–51.CrossRefGoogle Scholar
  16. 16.
    Wood, P.J. and Siddiqui, I.R., Anal. Biochem., 1971, vol. 39, pp. 418–428.CrossRefGoogle Scholar
  17. 17.
    York, W.S., Darvil, A.G., McNeil, M., and Stevenson, T.T., Methods Enzymol., 1986, vol. 118, pp. 3–40.CrossRefGoogle Scholar
  18. 18.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F., Anal. Chem., 1956, vol. 28, pp. 350–356.CrossRefGoogle Scholar
  19. 19.
    Sinitsyn, A.P., Chernoglazov, V.M., and Gusakov, A.V., Moscow: VINITI, 1990, vol. 25, pp. 30–37.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. N. Gordina
    • 1
  • S. P. Kuznetsov
    • 2
  • V. V. Golovchenko
    • 3
  • A. A. Zlobin
    • 1
    Email author
  1. 1.Vyatka State UniversityKirovRussia
  2. 2.Institute of Chemistry, Komi Scientific Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia
  3. 3.Institute of Physiology, Komi Scientific Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations